
iPOS4815 XZ-CAN DATASHEET P/N: P022.816.E102

-preliminary-

All dimensions are in mm; Drawing not to scale.

Motor – sensor configurations					
Motor Sensor	PMSM	BLDC	DC BRUSH	STEP (2-ph)	STEP (3-ph)
Incr. Encoder	7		T	(b)	
Incr. Encoder + Dig. Hall	(7)	5			
Linear Halls	9				
Digital Hall control only	(
Analog Sin/Cos encoder	(1)	T	T	3	
BISS / SSI / EnDAT / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki	T	(F)	T	T	
Tacho			T		
Open-loop (no sensor)	·			T	7

	Mating Connectors				
Producer	Part No.	Connector	Description		
Molex	35507-0800	J1	2.00mm Pitch Sherlock Housing, 8 Circuits		
Molex	35507-0900	J2	2.00mm Pitch Sherlock Housing, 9 Circuits		
Molex	35507-1200	J3	2.00mm Pitch Sherlock Housing, 12 Circuits		
Molex	35507-1000	J4	2.00mm Pitch Sherlock Housing, 10 Circuits		
Molex	35507-0200	J5	2.00mm Pitch Sherlock Housing, 2 Circuits		
Molex	35507-0400	J7, J11, J12	2.00mm Pitch Sherlock Housing, 4 Circuits		
Molex	35507-0700	J9	2.00mm Pitch Sherlock Housing, 7 Circuits		
	79758-1021 502128100	J1, J2, J3, J4, J5, J7, J9, J11, J12	Pre-Crimped Lead Sherlock Female-to- Sherlock Female, Tin (Sn) Plating, 300.00mm Length, 26 AWG, Black		
Molex			2.00mm Pitch, Micro-Latch Female Crimp Terminal, Tin (Sn) Plating, 24-30 AWG, Bag		
	638190500		Hand Crimp Tool for 2.00mm Pitch Terminal, 24-30 AWG		
J10	M3 screws fixed with 0.51Nm using a 2.5mm x 0.3mm tip screwdriver. Wire AWG 1230 (0.5mm² 3.3mm²), strip length 6.5mm.				

Features

- Motion controller and drive in a single compact unit based on MotionChip TM technology
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- Advanced motion control capabilities (PVT, S-curve, electronic cam)
- Motor supply: 11-50V; Logic SELV/ PELV supply: 9-36V; STO SELV/ PELV supply: 18-40V
- Output current: 15A RMS cont. (BLDC mode); 28A_{PEAK} RMS, up to 100kHz PWM
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- NTC/PTC analogue Motor Temperature sensor input
- Communication interfaces:
 - USB
 - ■TMLCAN and CANopen (CiA 301 v4.2, CiA 305 v.2.2.13 and CiA 402 v3.0) protocols
- 128 h/w addresses selectable by h/w sliding switches
- 16k x 16 SRAM memory for data acquisition
- 24k x16 E2ROM to store setup data, TML motion programs, cam tables and other user data
- Feedback Devices (dual-loop support)
 - 1st feedback devices supported:
 - Incremental encoder interface (single ended or differential)
 - Analogue sin/cos encoder interface (differential 1V_{pp})
 - Digital Hall sensor interface (single-ended and open collector)
 - Linear Hall sensors interface
 - pulse & direction interface (single ended or differential) for external (master) digital reference
 - 2nd feedback devices supported:
 - Incremental encoder interface (differential)
 - pulse & direction interface (differential) for external (master) digital reference
 - BISS / SSI / EnDAT / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki encoder interface
- Integrated termination resistors for differential Feedback#1 pairs, selectable through sliding switches.
- STO: 2 safe torque-off inputs, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1; -2/ EN61508-3; -4/ EN ISO 13849-1.
- 6 digital inputs, 12-36V, PNP/NPN programmable: 2 for limit switches, 4 general-purpose
- 6 digital outputs, 5-36V, PNP/NPN programmable: Ready, Error, 4 general-purpose (0.3A sourcing/NPN or 0.2A sinking/PNP)
- 2 analogue inputs: 12-bit: ±10V Reference, 0-5V Feedback or general purpose

TE	CHNOSOFT	iPOS4815 XZ-CAN PRODUCT DATA SHEET	N° document P022.816.E102.DSH.01E	Page: 1 of 6	
ALN	May 04, 2021		February 21, 2022		
Name	First edition	Document template: P099.1Q1.564.0001	Last edition	Visa:	

iPOS4815 XZ-CAN DATASHEET P/N: P022.816.E102

A			
∟.onn	ectors	descri	intion

J1 Fe	J1 Feedback #1			
Pin	Name	Description		
1	A1+/Sin+	Incr. encoder1 A single-ended, or A+ diff. input, or analogue encoder Sin+ diff. input		
2	A1-/Sin- /LH1	Incr. encoder1 A- diff. input, or analogue encoder Sin- diff. input if SW2 pin2= ON and pin3=OFF		
	/Ln i	Linear Hall 1 input if SW2 pin2= OFF and pin3=ON		
3	3 B1+/Cos+ Incr. encoder1 B single-ended, or B+ diff. input, or analog encoder Cos+ diff. input			
4	B1-/Cos- /LH2	Incr. encoder1 B- diff. input, or analogue encoder Cos- diff. input if SW2 pin5= ON and pin6=OFF		
		Linear Hall 2 input if SW2 pin5= OFF and pin6=ON		
5	Z1+	Incr. encoder1 Z single-ended, or Z+ diff. input		
6	Z1-/LH3	Incr. encoder1 Z- diff. input if SW2 pin8= ON and pin9=OFF		
	ZI-/LN3	Linear Hall 3 input if SW2 pin8= OFF and pin9=ON		
7	GND	Return ground. Internally connected to all GND signals except STO GND.		
8	+5V _{OUT}	5V output supply		

J2 Di	J2 Digital Inputs				
Pin	Name	Description			
1	GND	Return ground. Internally connected to all GND signals except STO GND.			
2	IN0	12-36V general-purpose digital PNP/NPN input			
3	IN1	12-36V general-purpose digital PNP/NPN input			
4	IN4	12-36V general-purpose digital PNP/NPN input			
5	IN5	12-36V general-purpose digital PNP/NPN input			
6	IN2/LSP	12-36V digital PNP/NPN input. Positive limit switch input			
7	IN3/LSN	12-36V digital PNP/NPN input. Negative limit switch input			
8	+V _{LOG}	Positive terminal of the logic supply input: 9 to $36V_{DC}$. Internally connected to other + V_{LOG} pins			
9	GND	Return ground. Internally connected to all GND signals except STO GND.			

	ехсері это біль.				
J3 Fe	J3 Feedback #2 and Digital Hall				
Pin	Name	Description			
1	A2+/Pulse+/ Data+/SL+	Incr. encoder2 A+ diff. input, or Pulse+, or Data+ for SSI, or Slave+ for BiSS; has internal 120Ω resistor between pins 11 and 12			
2	A2- /Pulse-/ Data-/SL-	Incr. encoder2 A- diff. input, or Pulse-, or Data- for SSI, or Slave- for BiSS; has internal 120 Ω resistor between pins 11 and 12			
3	B2+/Dir+/ CLK+/MA+	Incr. encoder2 B+ diff. input, or Dir+, or Clock+ for SSI, or Master+ for BiSS; has internal 120Ω resistor between pins 9 and 10			
4	B2-/Dir- /CLK-/MA-	Incr. encoder2 B- diff. input, or Dir-, or Clock- for SSI, or Master- for BiSS; has internal 120Ω resistor between pins 9 and 10			
5	Z2+	Incr. encoder2 Z+ diff. input; has internal 120 $\!\Omega$ resistor between pins 7 and 8			
6	Z2-	Incr. encoder2 Z- diff. input; has internal 120 $\!\Omega$ resistor between pins 7 and 8			
7	+5V _{OUT}	5V output supply			
8	GND	Return ground. Internally connected to all GND signals except STO GND.			
9	PE	Protection Earth			
10	Hall 1	Digital input Hall 1 sensor			
11	Hall 2	Digital input Hall 2 sensor			
12	Hall 3	Digital input Hall 3 sensor			

J4 Di	J4 Digital Outputs				
Pin	Name	Description			
1	GND	Return ground. Internally connected to all GND signals except STO GND.			
2	OUT0	12-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable			
3	OUT1	12-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable			
4	OUT4	12-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable			
5	OUT5	12-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable			
6	OUT3/ Ready	12-36V Ready signal digital output, 0.2A PNP/ 0.3A NPN, software selectable			
7	OUT2/ Error	12-36V Error signal digital output, 0.2A PNP/ 0.3A NPN, software selectable			
8	+V _{LOG}	Positive terminal of the logic supply input: 9 to 36V _{DC} . Internally connected to other +V _{LOG} pins			
9	PE	Protection Earth			
10	GND	Return ground. Internally connected to all GND signals except STO GND.			

J5 Logic supply input				
Pin	Name	Description		
1	-V _{LOG}	Negative terminal of the logic supply input: 9 to $36V_{DC}$ from SELV/ PELV type power supply.		
2	+V _{LOG}	Positive terminal of the logic supply input: 9 to $36V_{DC}$ from SELV/ PELV type power supply.		

J7 ST	J7 STO (Safe Torque Off)				
Pin	Name	Description			
1	STO2-	Safe Torque Off input 2, negative return (opto-isolated, 0V)	Apply between both		
2	STO2+	Safe Torque Off input 2, positive input (opto-isolated, 18÷40V)	STO1+, STO2+ and STO1-, STO2- 24V		
3	STO1+	Cofo Torque Off input 1 positive input	DC from SELV/ PELV power supply for motor PWM		
4	STO1-	Safe Torque Off input 1, negative return (opto-isolated, 0V)	output operation		

J9 An	J9 Analogue inputs				
Pin	Name	Description			
1	rsvd	Reserved. Do not connect			
2	FDBK	Analogue input, 12-bit, 0-5V. Reads analogue feedback (tacho), or general purpose			
3	+5V _{OUT}	5V output supply			
4	Temp Mot	NTC/PTC 3.3V input. Used to read an analog temperature value			
5	GND	Return ground. Internally connected to all GND signals except STO GND.			
6	REF+	+/-10V Analogue Input+, 11-bit	Found as		
7	REF-	+/-10V Analogue Input-, 11-bit	variable REF		
		·			

J10 P	J10 Power input and Motor outputs			
Pin	Name	Description		
1	GND	Negative return (ground) of the power supply		
2	CR/B-	Chopping Resistor output/ Phase B- for step motors		
3	C/B+	Phase C for 3-ph motors, B+ for 2-ph steppers		
4	B/A-	Phase B for 3-ph motors, A- for 2-ph steppers, Motor- for DC brush motors		
5	A/A+	Phase A for 3-ph motors, A+ for 2-ph steppers, Motor+ for DC brush motors		
6	PE	Earth connection		
7	PE	Earth connection		
8	+Vmot	Positive terminal of the motor supply: 12 to 48V _{DC} .		

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa:
ALN May 04, 2021		!	February 21, 2022	
		Title of document	N° document	
(5) TECHNOSOFT		iPOS4815 XZ-CAN	P022.816.E102.DSH.01E	
() / '-	011110001 1	IPUS4013 AZ-CAN	1 022.010.E102.D011.01E	

iPOS4815 XZ-CAN DATASHEET P/N: P022.816.E102

-preliminary-

J11 & J12 CAN		
Pin	Name	Description
1	PE	Earth connection
2	GND	Return ground. Internally connected to all GND signals except STO GND.
3	Can Lo	CAN-Bus negative line (dominant low)
4	Can Hi	CAN-Bus positive line (dominant high)

SW1 – Axis ID settings				
Position	Description			
17	Sets hardware Axis; Possible values: from 1 to 127; and 255 when all pins OFF.			
8	ON = CANOpen mode; OFF = TMLCAN mode.			

SW2 - Fee	dback #1 Signal routing and termination resistors
Position	Description
1	Internally connect 150Ω termination resistor between J1 pin 1 and 2.
2	Internally connect A1-/Sin- signal to J1 pin2; Remark: If this pin is ON, SW2 pin 3 must be OFF.
3	Internally connect Linear Hall 1 (LH1) signal to J1 pin2; Remark: If this pin is ON, SW2 pin 2 must be OFF.
4	Internally connect 150Ω termination resistor between J1 pin 3 and 4.
5	Internally connect B1-/Cos- signal to J1 pin4; Remark: If this pin is ON, SW2 pin 6 must be OFF.
6	Internally connect Linear Hall 2 (LH2) signal to J1 pin4; Remark : If this pin is ON, SW2 pin 5 must be OFF.
7	Internally connect 150Ω termination resistor between J1 pin 5 and 6.
8	Internally connect Z1- signal to J1 pin6; Remark : If this pin is ON, SW2 pin 9 must be OFF.
9	Internally connect Linear Hall 3 (LH3) signal to J1 pin6; Remark : If this pin is ON, SW2 pin 8 must be OFF.
10	Reserved

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified):

All parameters me				ditions (เ	unless oth	nerwise s	pecified):	
VLOG = 24 \	,							
			equence: -an :ude / cont. B		` ctannar	-) = 15A	PMS	
Operating Conditi	,	Solual allipiii	uue / cont. D	Min.	Typ.	Max.	Units	
		ı			тур.			
Ambient temperatu	ire			0		40 ¹	°C	
Ambient humidity		Non-conden		0	0 0 5	90	%Rh	
Altitude / pressure	2	Altitude (vs.		-0.1	0 ÷ 2.5	-	Km	
' Ambient Pressure		0 ²	0.75 ÷ 1	10.0	atm			
Storage Conditions			Min.	Тур.	Max.	Units		
Ambient temperatu	ire			-40		100	°C	
Ambient humidity		Non-conden	sing	0		100	%Rh	
Ambient Pressure			-	0		10.0	atm	
ESD capability (Human		Not powered				±0.5	kV	
body model)		Original pac				±15	kV	
Mechanical Mounting			Min.	Тур.	Max.	Units		
Airflow				natur	natural convection ³ , closed box			
0	Betv	veen adjacent	drives	30			mm	
Spacing required for vertical	Betv	veen drives ar	nd nearby	30			mm	
mounting	Betv	veen drives ar	nd roof-top	20			mm	
	Betv	veen adjacent	drives	4			mm	
Spacing required	Betv	Between drives and nearby		5			mm	
for horizontal mounting	Spa	ce needed for oval	drive	10			mm	
Ве		veen drives ar	nd roof-top	15			mm	
		Nominal current, 20KHz, Vmot=48V						
Power dissipation			ZUKHZ,		TBD		Watt	

Width x Height Global size	Environmental Cha	racteristics		Min.	Тур.	Max.	Units
Velight		Global size					mm
Dry cleaning is recommended Only Water- or Alcohol- based According to IEC60529, IP20							inch
Protection degree	•	Dry cleaning is rec	commended	Only '		Alcohol-	
Logic Supply Input (+Vuo)		According to IEC6		IP20			_
Nominal values							11
Absolute maximum values, drive operating but outside guaranteed parameters 8	Logic Supply Input	, ,			Typ.		
Supply voltage			n values.	9		30	VDC
Absolute maximum values, continuous Absolute maximum values, surge (duration ≤ 10ms) 1				8		40	V_{DC}
Continuous Absolute maximum values, surge (duration ≤ 10ms) 150	Supply voltage						
Absolute maximum values, surge (duration ≤ 10ms) 1	cappiy voltage			-0.6		42	V_{DC}
Supply current +V _{LOG} = 12V 150						45	.,
Supply current +V _{Log} = 24V +V _{Log} = 40V +V _{Log} =		surge (duration ≤ '	10ms) [†]	-1		+45	V
+V _{Log} = 40V Min. Typ. Max. Unit:			•				
Nominal values	Supply current						mA
Nominal values	Motor Supply Input			Min		May	Unite
Absolute maximum values, drive operating but outside guaranteed parameters Absolute maximum values, continuous Absolute maximum values, continuous Absolute maximum values, surge (duration ≤ 10ms) Idle	wotor Supply Input				Typ.	-	
Supply voltage			n values,	- ''		- 50	V DC
Supply voltage Absolute maximum values, continuous -0.6 54 Voltage efficiency Absolute maximum values, surge (duration ≤ 10ms) † -1 57 V Supply current Idle Operating Absolute maximum value, short-circuit condition (Duration ≤ 10ms) † -40 ±15 +40 A Motor Outputs (A/A+, B/A-, C/B+, C/B+, C/B-) Min. Typ. Max. Unit: 10 Min. T				9		52	V_{DC}
Absolute maximum values, surge (duration ≤ 10ms) †	Supply voltage						
Surge (duration ≤ 10ms) 1			ii values,	-0.6		54	V_{DC}
Supply current Idle				1		E7	V
Supply current Operating		surge (duration ≤ 1	-1			V	
Supply current Absolute maximum value, short-circuit condition (Duration ≤ 10ms) [†] Motor Outputs (A/A+, B/A-, C/B+, CR/B-) Nominal output current, continuous ⁴ Motor output current, continuous ⁴ Motor output current, peak Short-circuit protection threshold On-state voltage drop Off-state leakage current Motor inductance (phase-to-phase) Motor inductance (phase-to-phase) Motor Outputs (A/A+, B/A-, C/B+, CR/B-) For DC brushed, steppers and BLDC motors with Hall-based trapezoidal control (sinusoidal amplitude value) For DC brushed, steppers and BLDC motors with Hall-based trapezoidal control (sinusoidal amplitude value) For MSM motors with FOC sinusoidal amplitude value) For PMSM motors with FOC sinusoidal amplitude value For PMSM motors with FOC si				40			mA
Short-circuit condition (Duration ≤ 10ms) † Min. Typ. Max. Unit: Motor Outputs (A/A+, B/A-, C/B+, CR/B-)	Supply ourrent		n value	-40	±15	+40	A
Motor Outputs (A/A+, B/A-, C/B+, CR/B-) Min. Typ. Max. Units	Supply current	short-circuit condition				43	Α
Motor Outputs (A/A+, B/A-, C/B+, CR/B-) Nominal output current, continuous⁴ Motor output current, peak Short-circuit protection threshold Short-circuit protection delay On-state voltage drop Voltage efficiency Off-state leakage current Motor inductance (phase-to-phase) Motor inductance (phase-to-phase) Mominal outputs (A/A+, B/A-, C/B+, CR/B-) If or DC brushed, steppers and BLDC motors with Hall-based trapezoidal control (sinusoidal arapeitude value) If or DC brushed, steppers and BLDC motors with Hall-based trapezoidal control (sinusoidal amplitude value) If or PMSM motors with FOC sinusoidal effective value) Motor output current, including typical mating connector contact resistance A 40 +40 +40 A 5 TBD U TBD V Voltage efficiency Off-state leakage current Including typical mating connector contact resistance Voltage efficiency Off-state leakage current Recommended value, for current; inple max. ±5% of full range; +VMoT = 36 V Minimum value, limited by short-		(Duration ≤ 10ms)	t				
Nominal output current, continuous4 Samplitude value For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) For PMSM motor sinusoidal control (sinusoidal amplitude value) For PMSM motor sinusoidal control (sinusoidal amplitude value) For PMSM motor inductance (phase-to-phase) For PMSM motor with FOC sinusoidal amplitude value For PMSM motor sinusoidal amplitude value For PMSM motor with FOC sinusoidal amplitude value For PMSM motors with FOC sinusoidal amplitude value For PMSM motor with FOC sinusoidal motor with FOC sinuso	Motor Outputs (A/A			Min.	Тур.	Max.	Units
Nominal output current, continuous Itrapezoidal control for PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) for PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) for PMSM motors with FOC sinusoidal control (sinusoidal effective value)						04.04	
Nominal output current, continuous 4 Motor output current, peak Short-circuit protection threshold Short-circuit protection delay On-state voltage drop Voltage efficiency Off-state leakage current Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V Minimum value, limited by short- Interest of PMSM motors with FOC sinusoidal amplitude value) Interest of PMSM motors with FOC sinusoidal effective val		trapezoidal control for PMSM motors with FOC sinusoidal control (sinusoidal amplitude value) for PMSM motors with FOC				21.21	
continuous4 sinusoidal control (sinusoidal amplitude value) for PMSM motors with FOC sinusoidal control (sinusoidal effective value) sinusoidal effective value) sinusoidal effective value) sinusoidal control (sinusoidal effective value) sinusoidal effective							
for PMSM motors with FOC sinusoidal control (sinusoidal effective value) Motor output current, peak Short-circuit protection threshold Short-circuit protection delay On-state voltage drop Voltage efficiency Off-state leakage current Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V Minimum value, limited by short- Image of PMSM motors with FOC sinusoidal effective value) 15 15 16 17 18 18 19 19 19 19 19 19 19 19						21.21	Α
Sinusoidal control (sinusoidal effective value) Motor output current, peak Short-circuit protection threshold Short-circuit protection delay On-state voltage drop Voltage efficiency Off-state leakage current Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V Minimum value, [limited by short- with control of the cont							
Motor output current, peak Short-circuit protection threshold ±43 ±43 ±43 A A A						15	
Current, peak Foundaries		effective value)					
Short-circuit protection threshold ±43		maximum TBD s		-40		+40	Α
TBD							
Short-circuit protection delay				±43		±43	Α
Drotection delay Drotection delay Drotection delay Nominal output current; Including typical mating connector contact resistance Drotection delay Drot							
Constate Voltage drop Including typical mating connector contact resistance TBD V Voltage efficiency 100 % 40.5 ±1 m/s 100 % 100					TBD		μS
Voltage efficiency	On-state voltage						
Voltage efficiency					IBD		V
Recommended value, for current F _{PWM} 20 kHz 40 kHz 60	Voltage efficiency	CONTROCTOR CONTRACT	Toolotarioo		100		%
Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V Minimum value, limited by short- Mini	Off-state leakage				+0.5	+1	mA
Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V 100 kHz	current		F		_5.0		
Value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V Motor inductance (phase-to-phase) Minimum value, limited by short- Minimum value, 100 kHz Minimum value,							
Motor inductance (phase-to-phase) Motor inductance (phase-to-phase) Motor inductance (phase-to-phase) Minimum value, limited by short- Motor inductance (phase-to-phase) Motor inductance (phase-to-phase-to-phase) Motor inductance (phase-to-ph							
Motor inductance (phase-to-phase) +V _{MOT} = 36 V							μП
Minimum value, limited by short-		+V _{MOT} = 36 V					
limited by short- 60 kHz		Minimum value					
		limited by short-	60 kHz				
							μН
protection; 80 kHz +V _{MOT} = 36 V 100 kHz							
Recommended 20 kHz							
Motor electrical value for ±5% 40 kHz		value for ±5%	40 kHz				
							μs
(L/R) measurement error 80 kHz 100 kHz	(L/K)						
Current	Current				TDD		0/ 50
measurement FS = Full Scale accuracy TBD %F3		FS - Full Scale ac	curacy		טמו		%FS

 $^{^3}$ In case of forced cooling (conduction or ventilation) the spacing requirements may drop substantially down to zero as long as the ambient temperature is kept below the maximum operating limit 4 @20kHz $\rm F_{PWM}$

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa:
ALN May 04, 2021			February 21, 2022	
		Title of document	N° document	
TECHNOSOFT		iPOS4815 XZ-CAN	P022.816.E102.DSH.01E	
		PRODUCT DATA SHEET		Page: 3 of 6

¹Operating temperature at higher temperatures is possible with reduced current and power ratings Operating terriperature at ingrient emperatures is possible with reduced continuous power at 2 iPOS4815 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

iPOS4815 XZ-CAN DATASHEET P/N: P022.816.E102

Supply Output (+5	V)	Min.	Тур.	Max.	Units
Output voltage	Current sourced = 250mA	4.8	5	5.2	V
Output current			TBD		mA
Short-circuit			Y	es	
Over-voltage			NOT pr	otected	
ESD protection Human body model					kV
Isolation PE (earth) – GND			±250	V
Digital Inputs (INO, IN1, IN2/LSP, IN3/LSN, IN4, IN5) ¹ Min.				Max.	Units
Mode compliance		PNP			
Default state	Input floating (wiring disconnected)	Logic LOW			
	Logic "LOW"	-10	0	2.2	
	Logic "HIGH"	6.3	24	36	
	Hysteresis	1.2	2.4	2.8	
Input voltage	Floating voltage (not connected)		0		V
	Absolute maximum, continuous	-10		+39	
	Absolute maximum, surge (duration ≤ 1s) [†]	-20		+40	
Input current	Logic "LOW"; pulled to GND		0		mΛ
Input current	Logic "HIGH"		8	10	mA
Mada compliance		1	NIT	ONI	

input current	Logic "HIGH"		8	10	ША
Mode compliance			NF	PN	
Default state	Input floating (wiring disconnected)		Logic	HIGH	
	Logic "LOW"		0	2.2	
	Logic "HIGH"	6.3	24	36	
	Hysteresis	1.2	2.4	2.8	
Input voltage	Floating voltage (not connected)		15		V
	Absolute maximum, continuous	-10		+39	
	Absolute maximum, surge (duration ≤ 1s) [†]	-20		+40	
In most accomment	Logic "LOW"; Pulled to GND		8	10	A
Input current	Logic "HIGH"; Pulled to +24V	0	0	0	mA
Input frequency		0		10	kHz
Minimum pulse		6			μs
ESD protection	Human body model	±5			kV
Encoder1 Inputs (A1/A1+, A1-, B1/B2	I+, B1-, Z1/Z1+, Z1-)	Min.	Тур.	Max.	Units
Single-ended mode	Leave negative inputs	TTI /	CMOS /	Onen-col	
compliance	disconnected	,	OWIGO 7		100101
Input voltage,	Logic "LOW"			1.6	
single-ended mode	Logic "HIGH"	1.8	0.0		V
A/A+, B/B+	Floating voltage (not connected)		3.3	4.0	
Input voltage,	Logic "LOW"	4.4		1.2	V
single-ended mode Z/Z+	Logic "HIGH" Floating voltage (not connected)	1.4	4.7		V
Input current,	Logic "LOW"; Pull to GND		5.5	6	
single-ended mode	Logic "HIGH"; Internal 2.2KΩ pull-		5.5	U	mA
A/A+, B/B+, Z/Z+	up to +5	0	0	0	IIIA
Differential mode				l	<u> </u>
compliance	For full RS422 compliance, see ²	TIA/EIA-422-A			
Input voltage,	Hysteresis	±0.06	±0.1	±0.2	
differential mode	Common-mode range (A+ to GND, etc.)	-7		+7	V
Input impedance, differential	A1+ to A1-, B1+ to B1-		1		kΩ
dillerential	Z1+ to Z1-		1		
	Single-ended mode, Open- collector / NPN	0		5	MH z
Input frequency	Differential mode, or Single- ended driven by push-pull (TTL / CMOS)	0		10	MH z
Minimum	Single-ended mode, Open- collector / NPN	1			μs
Minimum pulse width	Differential mode, or Single- ended driven by push-pull (TTL / CMOS)	50			ns
Input voltage, any	Absolute maximum values, continuous	-7	_	+7	
pin to GND	Absolute maximum, surge (duration ≤ 1s) [†]	-11		+14	V
ESD protection	Human body model	±1			kV
200 protootion			I	l	1 1.4

Digital Output (OUT0, OUT1, OUT5) ¹	ts , OUT2/Error, OUT3/Ready, OUT4,	Min	Тур.	Max.	Units
Mode compliance			PNF	24V	
Default state	Not supplied (+VLOG floating or to GND)		High-Z	(floating)	
	Normal operation		Logic	"High"	
	Logic "HIGH"; output current = 0.2A		V _{LOG} -0.2	V_{LOG} -0.8	
	Logic "LOW"; output current = 0, no load		open-colle	ctor	
Output voltage	Logic "HIGH", external load to GND		0		V
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3	
	Absolute maximum, surge (duration ≤ 1s) [†]	-0.5		V _{LOG} +0.5	
	Logic "HIGH", source current, continuous			0.2	Α
Output current	Logic "HIGH", source current, pulse ≤ 5 s			0.4	Α
	Logic "LOW", means High-Z				mA
Minimum pulse width		2			μs
ESD protection	Human body model	±15			kV

Mode compliance			NPI	N 24V	
Default state	Not supplied (+VLOG floating or to GND)		High-Z	(floating)	
Dolaan state	Normal operation		Hiç	gh-Z	
	Logic "LOW"; output current = 0.3A		0.2	8.0	
	Logic "HIGH"; output current = 0, no load	0	pen-colled	ctor	
Output voltage	Logic "HIGH", external load to +V _{LOG}		V_{LOG}		V
	Absolute maximum, continuous	-0.3		V_{LOG} +0.3	3
	Absolute maximum, surge (duration ≤ 1s) ^t	-0.5		V _{LOG} +0.5	5
	Logic "LOW", sink current, continuous	0.3		0.3	Α
Output current	Logic "LOW", sink current, pulse ≤ 5 s			0.5	А
	Logic "HIGH", means High-Z				mA
Minimum pulse width		2			μs
ESD protection	Human body model	±15			kV
	puts (Hall1, Hall2, Hall3)	Min.	Тур.	Max.	Units
Mode compliance		TTL	/ CMOS	Open-col	lector
Default state	Input floating (Wiring disconnected)	Logic HIGH			
	Logic "LOW"		0	8.0	
	Logic "HIGH"	2	5		
Input voltage	Floating voltage (Not connected)		4.4		V
	Absolute maximum, surge (duration ≤ 1s) ^t	-10		+15	
	Logic "LOW"; Pull to GND			1.2	
Input current	Logic "HIGH"; Internal $4.7 \text{K}\Omega$ pullup to +5	0	0	0	mA
Minimum pulse width		2			μs
ESD protection	Human body model	±5			kV

 $^{^2}$ For full RS-422 compliance, termination resistors must be connected across the differential pairs; See SW2 settings.

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa:
ALN May 04, 2021			February 21, 2022	
		Title of document	N° document	
TECHNOSOFT		iPOS4815 XZ-CAN	P022.816.E102.DSH.01E	
		PRODUCT DATA SHEET		Page: 4 of 6

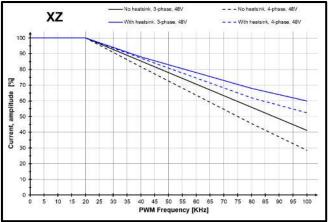
¹ The digital inputs and outputs are software selectable as PNP or NPN

iPOS4815 XZ-CAN DATASHEET P/N: P022.816.E102

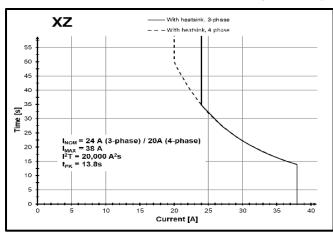
	ts (LH1, LH2, LH3)	Min.	Тур.	Max.	Units	
Input voltage	Operational range	0	0.5÷4.5	4.9	V	
	Absolute maximum values,	-7		+7	V	
Input voltage	continuous Absolute maximum, surge					
		-11		+14		
	(duration ≤ 1s) [†]					
Input current	Input voltage 0+5V	0		0.2	mA	
Interpolation Resolution	Depending on software			11	bits	
Frequency	settings	0		1	kHz	
ESD protection	Human body model	±1			kV	
Encoder2 Inputs	riuman body model					
(A2+, A2-, B2+,	B2-, Z2+, Z2-) ¹	Min.	Тур.	Max.	Units	
Differential	,				•	
mode			TIA/EIA	\-422-A		
compliance						
	Hysteresis	±0.06	±0.1	±0.2		
	Differential mode	-14		+14	.,	
Input voltage					V	
	Common-mode range	-11		+14		
la acid	(A+ to GND, etc.)					
Input impedance,	A2+, B2+, Z2+		150		Ω	
differential	A2-, B2-, Z2-		130		12	
Input frequency	Differential mode	0		10	MHz	
Minimum pulse				10		
width	Differential mode	50			ns	
Sin-Cos Encode	er Inputs	Miles	T	Marr	Haita	
(Sin+, Sin-, Cos		Min.	Тур.	Max.	Units	
Input voltage,	Sin+ to Sin-, Cos+ to Cos-		1	1.25	V_{PP}	
differential	,				VPP	
	Operational range	-1	2.5	4		
Input voltage,	Absolute maximum values,	-7		+7		
any pin to GND	continuous	·			V	
any pin to GND	Absolute maximum, surge	-11		+14		
	(duration ≤ 1s) [†]	-11		. 14		
Input	Differential, Sin+ to Sin-, Cos+	4.2	4.7		kΩ	
impedance	to Cos- 2	4.2			K12	
· ·	Common-mode, to GND		2.2		kΩ	
Resolution with	Software selectable, for one	2		10	bits	
interpolation	sine/cosine period					
Frequency	Sin-Cos interpolation	0		450	kHz	
	Quadrature, no interpolation	0		10	MHz	
ESD protection	Human body model	±1			kV	
Analog 05V In	puts (REF, FDBK)	Min.	Тур.	Max.	Units	
	Operational range	0		5		
	Absolute maximum values,	-12		+18		
Input voltage	continuous				V	
	Absolute maximum, surge			±36		
	(duration ≤ 1s) ^T					
Input	To GND		28		kΩ	
impedance	10 0112					
Resolution			12		bits	
Integral linearity				±2	bits	
Offset error			±2	±10	bits	
Gain error			±1%	±3%	% FS ³	
Bandwidth (-3Db)	Software selectable	0		1	kHz	
	L				kV	
FSD protection	Human hody model					
ESD protection	Human body model	±5 Min	Tve	Max		
ESD protection CAN-Bus	Human body model	Min	Тур	Max	Units	
	Human body model	Min IS	O11898, 0	CiA-301v	1.2,	
CAN-Bus Compliance		Min ISO CiA		CiA-301v4	4.2, /3.0	
CAN-Bus	Software selectable	Min IS	O11898, 0	CiA-301v4 2.13, 402v 1000	1.2,	
CAN-Bus Compliance Bit rate	Software selectable 1Mbps	Min ISO CiA	O11898, 0	CiA-301v4 2.13, 402v 1000 25	4.2, /3.0 Kbps	
CAN-Bus Compliance	Software selectable 1Mbps 500Kbps	Min ISO CiA	O11898, 0	CiA-301v- 2.13, 402v 1000 25 100	4.2, /3.0	
CAN-Bus Compliance Bit rate Bus length	Software selectable 1Mbps 500Kbps ≤ 250Kbps	Min ISO CiA	O11898, 0 A 305 v2.2	2:13, 402 1000 25 100 250	4.2, /3.0 Kbps	
CAN-Bus Compliance Bit rate	Software selectable 1Mbps 500Kbps	Min ISO CiA 125	011898, (\ 305 v2.2	2.13, 402 1000 25 100 250 n-board	4.2, /3.0 Kbps m	
CAN-Bus Compliance Bit rate Bus length Resistor	Software selectable 1Mbps 500Kbps ≤ 250Kbps Between CAN-Hi, CAN-Lo	Min ISO CiA 125	011898, (\(\lambda\) 305 \(\nu2.2\) \(\lambda\) \(\nu\) \(\nu\) \(\nu\) \(\nu\) \(\nu\) \(\nu\) \(\nu\) \(\nu\)	25 100 25 100 25 100 250 n-board	4.2, /3.0 Kbps m	
CAN-Bus Compliance Bit rate Bus length Resistor Node	Software selectable 1Mbps 500Kbps ≤ 250Kbps	Min ISG Ci/ 125 1 ÷ 1	011898, (A 305 v2.2	25 100 25 100 25 0 100 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.2, /3.0 Kbps m	
CAN-Bus Compliance Bit rate Bus length Resistor	Software selectable 1Mbps 500Kbps ≤ 250Kbps Between CAN-Hi, CAN-Lo Hardware: by Hex switch	Min ISC CiA 125 1 ÷ 1	011898, (A 305 v2.2 none of 5 & LSS in (CAN)	2.13, 4020 1000 25 100 250 n-board non-confi open); (TMLCA	4.2, /3.0 Kbps m gured	
CAN-Bus Compliance Bit rate Bus length Resistor Node addressing	Software selectable 1Mbps 500Kbps ≤ 250Kbps Between CAN-Hi, CAN-Lo Hardware: by Hex switch Software	Min ISC CiA 125 1 ÷ 1	011898, (A 305 v2.2	2.13, 4020 1000 25 100 250 n-board non-confi open); (TMLCA	4.2, /3.0 Kbps m gured	
CAN-Bus Compliance Bit rate Bus length Resistor Node addressing Voltage, CAN-Hi	Software selectable 1Mbps 500Kbps ≤ 250Kbps Between CAN-Hi, CAN-Lo Hardware: by Hex switch Software Absolute maximum,	Min ISG CiA 125 1 ÷ 1 1. 1 ÷ 127 (0)	011898, (A 305 v2.2 none of 5 & LSS in (CAN)	CiA-301v 2.13, 402v 1000 25 100 250 n-board non-confi open); (TMLCA); 1- 255 (4.2, /3.0 Kbps m gured N)	
CAN-Bus Compliance Bit rate Bus length Resistor Node addressing	Software selectable 1Mbps 500Kbps ≤ 250Kbps Between CAN-Hi, CAN-Lo Hardware: by Hex switch Software	Min ISC CiA 125 1 ÷ 1	011898, (A 305 v2.2 none of 5 & LSS in (CAN)	2.13, 4020 1000 25 100 250 n-board non-confi open); (TMLCA	4.2, /3.0 Kbps m gured	

Safe torque OFF		Min.	Tum	Max.	Units	
(STO1+, STO1-; STO2+, STO2+) Safety function According to EN61800-5-2			71			
Safety function	STO (Safe Torque OFF)					
EN 61800-5-1/	Safety Integrity Level	safety integrity level 3 (SIL:		SIL3)		
-2 and EN 61508-5-3/ -4 Classification	PFHD (probability of dangerous failures per hour)	8*10 ⁻¹⁰ hour ⁻¹ (0.8 FIT)		IT)		
	Performance Level		Cat3	/PLe		
EN13849-1 Classification	MTTFM (meantime to dangerous failure)		377		years	
Mode compliance		PNP				
Default state	Input floating (wiring disconnected)		Logic	LOW		
	Logic "LOW"	-20		5.6		
Input voltage	Logic "HIGH"	18		36	V	
	Absolute maximum, continuous	-20		+40		
Input current	Logic "LOW"; pulled to GND Logic "HIGH", pulled to +Vlog		5	13	mA	
Repetitive test	Ignored high-low-high			5	ms	
(High-low-high)				20	Hz	
Fault reaction time	From internal fault detection to register DER bit 14 =1 and OUT2/Error high-to-low			30	ms	
PWM operation delay	From external STO low-high transition to PWM operation enabled			30	ms	
ESD protection Human body model						
		±2			kV	
	der Interface from J3	Min.	Тур.	Max.	Units	
				Max.		
Differential mode (CLOCK, DATA) ¹	For full RS422 compliance,	Min.		Max. 5.0	Units	
BiSS/SSI Encode Differential mode (CLOCK, DATA) ¹	For full RS422 compliance, see ¹ Differential; 50Ω	Min.	A-422			
Differential mode (CLOCK, DATA) ¹	For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode,	Min. TIA/EI/ 2.0 2.3	A-422 2.5	5.0	Units	
Biss/ssi Encor Differential mode (CLOCK, DATA) ¹ CLOCK Output voltage	For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode, referenced to GND	Min. TIA/EI/ 2.0 2.3	2.5 2.5	5.0	Units V	
BISS/SSI Encord Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input	For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode, referenced to GND Software selectable	2.0 2.3	2.5 2.5 0, 2000, 3	5.0 2.7 3000	V kHz	
Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance	For full RS422 compliance, see 1 Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-	2.0 2.3	2.5 2.5 0, 2000, 3	5.0 2.7 3000	V kHz	
Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input	For full RS422 compliance, see 1 Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND	Min. TIA/EI/ 2.0 2.3 100 ±0.1	2.5 2.5 0, 2000, 3	5.0 2.7 3000 ±0.5	V kHz	
Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance	For full RS422 compliance, see 1 Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND Absolute maximum, surge	2.0 2.3 100 ±0.1	2.5 2.5 0, 2000, 3	5.0 2.7 3000 ±0.5	V kHz	
Biss/ssi Encord Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input common mode	For full RS422 compliance, see 1 Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND	Min. TIA/EI/ 2.0 2.3 100 ±0.1 -7 -25	A-422 2.5 2.5 0, 2000, 3 ±0.2 120	5.0 2.7 3000 ±0.5	V kHz	
Biss/ssi Encord Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input common mode	For full RS422 compliance, see 1 Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND Absolute maximum, surge	Min. TIA/EI/ 2.0 2.3 100 ±0.1 -7 -25 Binary Single-	A-422 2.5 2.5 0, 2000, 3 ±0.2 120 / Gray turn / mul	5.0 2.7 3000 ±0.5 +12 +25	V kHz	
Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input common mode range	ter Interface from J3 For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND Absolute maximum, surge (duration≤1s) †	Min. TIA/EI/ 2.0 2.3 100 ±0.1 -7 -25 Binary Single-	A-422 2.5 2.5 0, 2000, 3 ±0.2 120 / Gray	5.0 2.7 3000 ±0.5 +12 +25	V kHz	
Biss/ssi Encord Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input common mode range	ter Interface from J3 For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND Absolute maximum, surge (duration≤1s) †	Min. TIA/EI/ 2.0 2.3 100 ±0.1 -7 -25 Binary Single-	A-422 2.5 2.5 0, 2000, 3 ±0.2 120 / Gray turn / mul	5.0 2.7 3000 ±0.5 +12 +25	V kHz V Ω	
Biss/ssi Encord Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input common mode range	For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor onboard Referenced to GND Absolute maximum, surge (duration≤1s) † Software selectable Single-turn	Min. TIA/EI/ 2.0 2.3 100 ±0.1 -7 -25 Binary Single-	A-422 2.5 2.5 0, 2000, 3 ±0.2 120 / Gray turn / mul	5.0 2.7 3000 ±0.5 +12 +25	V kHz	
Differential mode (CLOCK, DATA) 1 CLOCK Output voltage CLOCK frequency DATA Input hysteresis Data input impedance DATA Input common mode range DATA format	ter Interface from J3 For full RS422 compliance, see ¹ Differential; 50Ω differential load Common-mode, referenced to GND Software selectable Differential mode Termination resistor on-board Referenced to GND Absolute maximum, surge (duration≤1s) † Software selectable Single-turn	### Min. TIA/EI/ 2.0 2.3 100 ±0.1 -7 -25 Binary Single- Countil s, some	A-422 2.5 2.5 0, 2000, 3 ±0.2 120 / Gray tturn / multip direction bits must	5.0 2.7 3000 ±0.5 +12 +25 tititum on	V kHz V Ω Bits ed by	

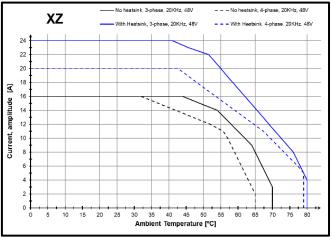
Conformity					
	2014/30/EU (EMC),				
	2014/35/EU (LVD),				
EU	2011/65/EU (RoHS),				
Declaration	1907/2006/EC (REACH),				
	93/68/EEC (CE Marking Directive),				
	EC 428/2009 (non dual-use item, output frequency limited to 590Hz)				

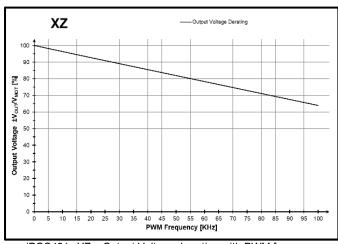

 $[\]mbox{\dag}$ Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

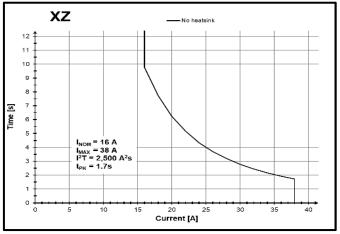
^{3 &}quot;FS" stands for "Full Scale"


Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa:
ALN	May 04, 2021		February 21, 2022	
(T) TECHNOSOFT		Title of document	N° document	
		iPOS4815 XZ-CAN	P022.816.E102.DSH.01E	
		PRODUCT DATA SHEET		Page: 5 of 6

 $^{^1}$ Encoder2 differential input pins have internal 120Ω termination resistors connected across 2 For many applications, a termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS-. See SW2 settings.


iPOS4815 XZ-CAN DATASHEET P/N: P022.816.E102


iPOS481x XZ - Current de-rating with PWM frequency, @48V


iPOS481x XZ - Over-current diagram (With heatsink)

iPOS481x XZ - Current de-rating with ambient temperature

iPOS481x XZ – Output Voltage de-rating with PWM frequency

iPOS481x XZ – Over-current diagram (No heatsink)

Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa:
ALN	May 04, 2021		February 21, 2022	
		Title of document	N° document	
TECHNOSOFT		iPOS4815 XZ-CAN	P022.816.E102.DSH.01E	
		PRODUCT DATA SHEET		Page: 6 of 6