

CANopen
Programming

User Manual

© Technosoft 2024 P091.063.CANopen.UM.1224

© Technosoft 2024 2 CANopen Programming

Table of contents

Table of contents ... 2

Read This First ... 12

About This Manual ... 12

Scope of This Manual .. 12

Notational Conventions ... 12

Related Documentation ... 13

If you Need Assistance … ... 13

1 Getting Started ... 14

1.1 Setting up the drive using EasyMotion Studio II .. 14

1.1.1 What is EasyMotion Studio II? .. 14

1.1.2 Installing EasyMotion Studio II .. 14

1.1.3 Establishing communication with the drive .. 15

1.1.3.1 Connecting via RS-232 ... 16

1.1.4 Choosing the drive and motor configuration .. 17

1.1.5 Commissioning the drive ... 17

1.1.6 Downloading setup data to drive/motor ... 22

1.1.7 Creating a .sw file with the setup data ... 23

1.1.8 Checking and updating setup data via .sw files with a CANopen master .. 23

1.1.9 Testing and monitoring the drive behavior .. 23

1.1.10..... TechnoCAN Extension .. 26

1.2 Changing the drive Axis ID (Node ID) ... 27

1.2.1 Axis ID Initialization on Power-On ... 27

1.2.2 Determining an Unknown Axis ID.. 27

1.3 Setting the current limit ... 28

1.4 Setting the CAN baud rate ... 28

1.5 CANopen factor group setting .. 29

1.5.1 Factor group setting - CiA-402 (obsolete) ... 29

1.5.2 Factor group setting - CiA-402-2 ... 29

1.6 Using the built-in Motion Controller and TML .. 30

1.6.1 Technosoft Motion Language Overview .. 30

2 Layer Setting Services (LSS protocol) 2F ... 31

2.1 Overview ... 31

2.2 Configuration services... 31

2.2.1 Switch State Global ... 31

2.2.2 Switch State Selective ... 32

2.2.3 Configure Node ID .. 32

2.2.4 Configure Bit Timing Parameters .. 33

2.2.5 Activate Bit Timing Parameters ... 33

2.2.6 Store Configuration Protocol ... 34

2.2.7 Inquire Identity Vendor ID ... 34

2.2.8 Inquire Identity Product Code .. 34

2.2.9 Inquire Identity Revision Number .. 34

2.2.10..... Inquire Identity Serial Number ... 35

2.2.11..... Inquire Identity Node ID .. 35

2.2.12..... Identify Remote Slave ... 35

2.2.13..... Identify non-configured Remote Slave .. 35

© Technosoft 2024 3 CANopen Programming

3 CAN and the CANopen protocol ... 36

3.1 CAN Architecture ... 36

3.2 Accessing CANopen devices .. 36

3.2.1 Object dictionary ... 36

3.2.2 Object access using index and sub-index ... 36

3.2.3 Service Data Objects (SDO) ... 37

3.2.4 Process Data Objects (PDO) .. 37

3.3 Objects that define SDOs and PDOs ... 38

3.3.1 Object 1200h: Server SDO Parameter .. 38

3.3.2 Object 1400h: Receive PDO1 Communication Parameters .. 38

3.3.3 Object 1401h: Receive PDO2 Communication parameters ... 39

3.3.4 Object 1402h: Receive PDO3 Communication parameters ... 39

3.3.5 Object 1403h: Receive PDO4 Communication parameters ... 40

3.3.6 Object 1600h: Receive PDO1 Mapping Parameters .. 40

3.3.7 Object 1601h: Receive PDO2 Mapping Parameters .. 41

3.3.8 Object 1602h: Receive PDO3 Mapping Parameters .. 42

3.3.9 Object 1603h: Receive PDO4 Mapping Parameters .. 42

3.3.10..... Object 1800h: Transmit PDO1 Communication parameters .. 43

3.3.11..... Object 1801h: Transmit PDO2 Communication parameters .. 43

3.3.12..... Object 1802h: Transmit PDO3 Communication parameters .. 44

3.3.13..... Object 1803h: Transmit PDO4 Communication parameters .. 45

3.3.14..... Object 1A00h: Transmit PDO1 Mapping Parameters .. 45

3.3.15..... Object 1A01h: Transmit PDO2 Mapping Parameters .. 46

3.3.16..... Object 1A02h: Transmit PDO3 Mapping Parameters .. 46

3.3.17..... Object 1A03h: Transmit PDO4 Mapping Parameters .. 47

3.3.18..... Object 207Dh: Dummy .. 47

3.4 Dynamic mapping of the PDOs ... 48

3.5 RxPDOs mapping example .. 48

3.6 TxPDOs mapping example .. 49

4 Network Management .. 50

4.1 Overview ... 50

4.1.1 Network Management (NMT) State Machine .. 50

4.1.2 Device control ... 50

4.1.2.1 Enter Pre-Operational ... 51

4.1.2.2 Reset communication .. 51

4.1.2.3 Reset Node ... 51

4.1.2.4 Start Remote Node ... 51

4.1.2.5 Stop Remote Node .. 52

4.1.3 Device monitoring ... 52

4.1.3.1 Node guarding protocol ... 52

4.1.3.2 Heartbeat protocol ... 52

4.1.3.3 Boot-up protocol .. 52

4.1.3.4 Synchronization between devices ... 52

4.1.4 Emergency messages ... 53

4.1.4.1 Emergency message structures .. 53

4.2 Network management objects ... 54

4.2.1 Object 1001h: Error Register ... 54

4.2.2 Object 1003h: Pre-defined error field ... 54

4.2.3 Object 1005h: COB-ID of the SYNC Message... 55

4.2.4 Object 1006h: Communication Cycle Period ... 55

4.2.5 Object 1010h: Store parameters .. 55

4.2.6 Object 1011h: Restore parameters .. 56

4.2.7 Object 100Ch: Guard Time .. 57

4.2.8 Object 100Dh: Life Time Factor ... 57

4.2.9 Object 1013h: High Resolution Time Stamp .. 57

© Technosoft 2024 4 CANopen Programming

4.2.10..... Object 2004h: COB-ID of the High-resolution time stamp ... 58

4.2.11..... Configure the drive as a SYNC master Example .. 58

4.2.12..... Object 1014h: COB-ID Emergency Object... 58

4.2.13..... Object 1017h: Producer Heartbeat Time ... 59

5 Drive control and status .. 60

5.1 CiA402 State machine and command coding .. 60

5.2 Drive control and status objects ... 62

5.2.1 Object 6040h: Controlword .. 62

5.2.2 Object 6041h: Statusword.. 63

5.2.3 Object 1002h: Manufacturer Status Register ... 64

5.2.4 Object 6060h: Modes of Operation .. 64

5.2.5 Object 6061h: Modes of Operation Display ... 65

5.3 Limit Switch functionality explained ... 65

5.3.1 Hardware limit switches LSP and LSN functionality .. 65

5.3.2 Software limit switches functionality .. 66

5.4 Error monitoring ... 67

5.4.1 Object 2000h: Motion Error Register ... 67

5.4.2 Object 2001h: Motion Error Register Mask .. 67

5.4.3 Object 2002h: Detailed Error Register (DER) .. 68

5.4.4 Object 2009h: Detailed Error Register 2 (DER2) 4F ... 68

5.4.5 Object 2003h: Communication Error Register (CER) .. 69

5.4.6 Object 603Fh: Error code .. 69

5.4.7 Object 605Ah: Quick stop option code ... 69

5.4.8 Object 605Bh: Shutdown option code .. 70

5.4.9 Object 605Ch: Disable operation option code.. 70

5.4.10..... Object 605Dh: Halt option code ... 70

5.4.11..... Object 605Eh: Fault reaction option code .. 71

5.4.12..... Object 6007h: Abort connection option code ... 71

5.4.13..... Object 2114h: Fault Override Option Code .. 72

5.4.14..... Object 2113h: Detailed Option Code ... 73

5.5 Digital I/O control and status objects ... 74

5.5.1 Object 60FDh: Digital inputs .. 74

5.5.2 Object 208Fh: Digital inputs 8bit .. 75

5.5.3 Object 60FEh: Digital outputs .. 76

5.5.3.1 Example for setting the digital outputs .. 77

5.5.4 Object 2090h: Digital outputs 8bit .. 77

5.5.5 Object 2045h: Digital outputs status .. 78

5.5.6 Object 2102h: Brake status.. 78

5.5.7 Object 2046h: Analogue input: Reference ... 79

5.5.8 Object 2047h: Analogue input: Feedback .. 79

5.5.9 Object 2055h: DC-link voltage ... 79

5.5.10..... Object 2058h: Drive Temperature .. 79

5.5.11..... Object 2108h: Filter variable 16bit ... 80

5.5.11.1 How object 2108h works: ... 80

5.6 Protections Setting Objects .. 81

5.6.1 Object 607Dh: Software position limit 5F .. 81

5.6.2 Object 2050h: Over-current protection level .. 81

5.6.3 Object 2051h: Over-current time out .. 82

5.6.4 Object 2052h: Motor nominal current ... 82

5.6.5 Object 2053h: I2t protection integrator limit ... 82

5.6.6 Object 2054h: I2t protection scaling factor ... 83

5.6.7 Object 207Fh: Current limit .. 83

5.7 Step Loss Detection for Stepper Open Loop configuration 84

5.7.1 Object 2083h: Encoder Resolution for step loss protection ... 84

5.7.2 Object 2084h: Stepper Resolution for step loss protection .. 84

© Technosoft 2024 5 CANopen Programming

5.7.3 Enabling step loss detection protection ... 85

5.7.4 Step loss protection setup ... 86

5.7.5 Recovering from step loss detection fault ... 86

5.7.6 Remarks about Factor Group settings when using step the loss detection ... 86

5.8 Drive info objects ... 86

5.8.1 Object 1000h: Device Type.. 86

5.8.2 Object 6502h: Supported drive modes .. 87

5.8.3 Object 1008h: Manufacturer Device Name .. 87

5.8.4 Object 100Ah: Manufacturer Software Version .. 87

5.8.5 Object 2060h: Software version of a TML application .. 88

5.8.6 Object 1018h: Identity Object ... 88

5.9 Miscellaneous Objects ... 89

5.9.1 Object 2025h: Stepper current in open-loop operation .. 89

5.9.2 Object 2026h: Stand-by current for stepper in open-loop operation .. 89

5.9.3 Object 2027h: Timeout for stepper stand-by current .. 90

5.9.4 Object 2075h: Position triggers .. 90

5.9.5 Object 2085h: Position triggered outputs ... 90

5.9.6 Object 2076h: Save current configuration .. 91

5.9.7 Object 208Bh7F: Sin AD signal from Sin/Cos encoder .. 91

5.9.8 Object 208Ch8F: Cos AD signal from Sin/Cos encoder ... 92

5.9.9 Object 208Eh: Auxiliary Settings Register ... 92

5.9.10..... Object 210Bh: Auxiliary Settings Register2 ... 92

5.9.11..... Object 20A0h: Load Position and Speed monitoring 10F .. 93

5.9.12..... Object 2100h: Number of steps per revolution... 93

5.9.13..... Object 2101h: Number of microsteps per step... 94

5.9.14..... Object 2103h: Number of encoder counts per revolution ... 94

5.9.15..... Object 2091h11F: Lock EEPROM.. 94

5.9.16..... Object 2092h: User Variables 12F .. 95

6 Factor group ... 95

6.1 Factor group objects - CiA-402 (obsolete) .. 95

6.1.1 Object 607Eh: Polarity ... 95

6.1.2 Object 6089h: Position notation index ... 96

6.1.3 Object 608Ah: Position dimension index ... 96

6.1.4 Object 608Bh: Velocity notation index ... 96

6.1.5 Object 608Ch: Velocity dimension index ... 97

6.1.6 Object 608Dh: Acceleration notation index .. 97

6.1.7 Object 608Eh: Acceleration dimension index... 97

6.1.8 Object 206Fh: Time notation index .. 98

6.1.9 Object 2070h: Time dimension index ... 98

6.1.10..... Object 6093h: Position factor ... 98

6.1.10.1 Setting the numerator and divisor in a factor group object. Example .. 99

6.1.11..... Object 6094h: Velocity encoder factor ... 99

6.1.12..... Object 6097h: Acceleration factor .. 99

6.1.13..... Object 2071h: Time factor.. 100

6.2 Factor group objects - CiA-402-2 .. 101

6.2.1 Object 60A8h: SI unit position .. 102

6.2.2 Object 6093h: Position Factor / Position Scaling ... 102

6.2.3 Object 608Fh: Position Encoder Resolution .. 103

6.2.4 Object 6091h: Gear Ratio .. 103

6.2.5 Object 6092h: Feed Constant .. 104

6.2.6 Object 60A9h: SI unit velocity .. 104

6.2.7 Object 6094h: Velocity encoder factor ... 105

6.2.8 Object 6096h: Velocity Factor .. 106

6.2.9 Object 60AAh: SI unit acceleration .. 106

6.2.10..... Object 210Fh: Acceleration encoder factor .. 107

6.2.11..... Object 6097h: Acceleration Factor ... 107

6.2.12..... Object 60ABh: SI unit jerk .. 108

© Technosoft 2024 6 CANopen Programming

6.2.13..... Object 2110h: Jerk encoder factor ... 108

6.2.14..... Object 60A2h: Jerk Factor ... 109

7 Homing Mode ... 110

7.1 Overview ... 110

7.2 Homing methods .. 111

7.2.1 Method 1: Homing on the Negative Limit Switch and Index Pulse .. 111

7.2.2 Method 2: Homing on the Positive Limit Switch and Index Pulse .. 111

7.2.3 Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse. ... 111

7.2.4 Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse. 112

7.2.5 Methods 7 to14: Homing on the Home Switch using limit switches and Index Pulse. 112

7.2.6 Methods 17 to 30: Homing without an Index Pulse ... 113

7.2.7 Method 17: Homing on the Negative Limit Switch ... 113

7.2.8 Method 18: Homing on the Positive Limit Switch .. 113

7.2.9 Methods 19 and 20: Homing on the Positive Home Switch ... 114

7.2.10..... Methods 21 and 22: Homing on the Negative Home Switch ... 114

7.2.11..... Methods 23 to30: Homing on the Home Switch using limit switches... 115

7.2.12..... Methods 33 and 34: Homing on the Index Pulse .. 115

7.2.13..... Method 35: Homing on the Current Position ... 116

7.2.14..... Method -1: Homing on the Negative Mechanical Limit and Index Pulse ... 116

7.2.14.1 Method -1 based on motor current increase ... 116

7.2.14.2 Method -1 based on step loss detection .. 116

7.2.15..... Method -2: Homing on the Positive Mechanical Limit and Index Pulse ... 117

7.2.15.1 Method -2 based on motor current increase ... 117

7.2.15.2 Method -2 based on step loss detection .. 117

7.2.16..... Method -3: Homing on the Negative Mechanical Limit without an Index Pulse. 117

7.2.16.1 Method -3 based on motor current increase ... 117

7.2.16.2 Method -3 based on step loss detection .. 118

7.2.17..... Method -4: Homing on the Positive Mechanical Limit without an Index Pulse. 118

7.2.17.1 Method -4 based on motor current increase ... 118

7.2.17.2 Method -4 based on step loss detection .. 119

7.3 Homing Mode Objects ... 119

7.3.1 Controlword in homing mode .. 119

7.3.2 Statusword in homing mode .. 120

7.3.3 Object 607Ch: Home offset.. 120

7.3.4 Object 6098h: Homing method .. 120

7.3.5 Object 6099h: Homing speeds ... 121

7.3.6 Object 609Ah: Homing acceleration .. 121

7.3.7 Object 207Bh: Homing current threshold ... 122

7.3.8 Object 207Ch: Homing current threshold time ... 122

7.4 Homing example .. 123

8 Position Profile Mode .. 124

8.1 Overview ... 124

8.1.1 Discrete motion profile (change set immediately = 0) ... 124

8.1.2 Continuous motion profile (change set immediately = 1)... 124

8.1.3 Controlword in profile position mode ... 125

8.1.4 Statusword in profile position mode .. 125

8.2 Position Profile Mode Objects ... 125

8.2.1 Object 607Ah: Target position ... 125

8.2.2 Object 6081h: Profile velocity .. 126

8.2.3 Object 6083h: Profile acceleration ... 126

8.2.4 Object 6085h: Quick stop deceleration .. 126

8.2.5 Object 2023h: Jerk time ... 127

8.2.6 Object 6086h: Motion profile type .. 127

8.2.7 Object 6062h: Position demand value ... 127

8.2.8 Object 6063h: Position actual internal value .. 127

© Technosoft 2024 7 CANopen Programming

8.2.9 Object 6064h: Position actual value ... 128

8.2.10..... Object 6065h: Following error window ... 128

8.2.11..... Object 6066h: Following error time out .. 128

8.2.12..... Object 6067h: Position window .. 129

8.2.13..... Object 6068h: Position window time .. 129

8.2.14..... Object 607Bh: Position range limit 14F ... 130

8.2.15..... Object 60F2h: Positioning option code 15F .. 130

8.2.16..... Object 60F4h: Following error actual value.. 132

8.2.17..... Object 60FCh: Position demand internal value .. 132

8.2.18..... Object 2022h: Control effort ... 132

8.2.19..... Object 2081h: Set/Change the actual motor position ... 133

8.2.20..... Object 2088h16F: Actual internal position from sensor on motor ... 133

8.2.21..... Object 208Dh17F: Auxiliary encoder position .. 133

8.3 Position Profile Examples ... 134

8.3.1 Relative trapezoidal example .. 134

8.3.2 Absolute trapezoidal example ... 135

8.3.3 Relative Jerk-limited ramp profile example ... 136

8.3.4 Absolute Jerk-limited ramp profile example .. 137

9 Torque Profile Mode .. 139

9.1 Overview ... 139

9.1.1 Controlword in profile torque mode ... 139

9.1.2 Statusword in profile torque mode ... 139

9.2 Torque Profile Mode Objects ... 139

9.2.1 Object 6071h: Target torque .. 139

9.2.2 Object 6075h: Motor rated current ... 140

9.2.3 Object 6087h: Torque slope... 140

9.3 Torque Profile Example ... 140

10 Interpolated Position Mode .. 142

10.1 Overview .. 142

10.1.1..... Internal States ... 142

10.1.2..... Controlword in interpolated position mode .. 142

10.1.3..... Statusword in interpolated position mode ... 143

10.2 Interpolated Position Objects... 143

10.2.1..... Object 60C0h: Interpolation sub mode select .. 143

10.2.2..... Object 60C1h: Interpolation data record .. 144

10.2.2.1 a) For linear interpolation (standard DS402 implementation) .. 144

10.2.2.2 b) For PT (Position –Time) linear interpolation (legacy). ... 144

10.2.2.3 c) For PVT (Position – Velocity – Time) cubic interpolation... 145

10.2.3..... Object 2072h: Interpolated position mode status ... 145

10.2.4..... Object 2073h: Interpolated position buffer length .. 146

10.2.5..... Object 2074h: Interpolated position buffer configuration .. 146

10.2.6..... Object 2079h: Interpolated position initial position ... 147

10.2.7..... Object 207Ah: Interpolated position 1st order time ... 147

10.2.8..... Loading the interpolated points ... 147

10.3 Linear interpolation example ... 148

10.4 PT absolute movement example .. 148

10.5 PVT absolute movement example ... 150

10.6 PVT relative movement example .. 154

11 Cyclic Synchronous Position mode (CSP) ... 157

11.1 Overview .. 157

11.1.1..... Controlword in Cyclic Synchronous Position mode (CSP) .. 157

© Technosoft 2024 8 CANopen Programming

11.1.2..... Statusword in Cyclic Synchronous Position mode (CSP) .. 157

11.2 Cyclic Synchronous Position Mode Objects ... 158

11.2.1..... Object 60C2h: Interpolation time period .. 158

11.2.2..... Object 2086h: Limit speed for CSP 19F .. 158

11.3 Cyclic Synchronous Position Mode example ... 159

11.4 Configuring Technosoft CANopen Drives for NC-PTP (CSP) operation in
TwinCAT 3 .. 162

11.4.1..... Create a new project and scan for the drives .. 162

11.4.2..... Setting the Sync-TxPDO Delay ... 163

11.4.3..... Adding new Nc-PTP axes ... 164

11.4.4..... NC-PTP Axis settings .. 164

11.4.5..... Setting the CAN communication cycle time .. 165

11.4.6..... Configuring the TwinCAT PDO layout ... 166

11.4.6.1 Setting the PDOs as synchronous .. 168

11.4.7..... Adding start-up SDO drive configuration messages .. 168

11.4.7.1 Mapping objects to RxPDO1 ... 168

11.4.7.2 Mapping objects to TxPDO1 ... 169

11.4.7.3 Setting Modes of Operation to CSP mode .. 170

11.4.7.4 Setting the interpolation object .. 170

11.4.7.5 Setting object 1006h to 0; Synchronization issue workaround ... 171

11.4.8..... Linking drive PDO data variables to internal NC-PTP variables .. 171

11.4.8.1 Linking standard NC-PTP variables .. 171

11.4.8.2 Linking the home input IN0 to the HomingSensor of the NC-PTP interface 172

11.4.9..... Enabling and testing the NC-PTP interface in TwinCAT ... 173

11.4.10 ... Setting Controlword bit 14 to 1 (Optional) ... 173

12 Cyclic synchronous velocity mode (CSV) ... 176

12.1 Overview .. 176

12.1.1..... Controlword in cyclic synchronous velocity mode ... 176

12.1.2..... Statusword in cyclic synchronous velocity mode... 176

12.2 Cyclic Synchronous Velocity Mode basic example .. 176

13 Cyclic synchronous torque mode (CST) ... 181

13.1 Overview .. 181

13.1.1..... Controlword in cyclic synchronous torque mode ... 181

13.1.2..... Statusword in cyclic synchronous torque mode .. 181

13.2 Cyclic synchronous torque mode objects .. 181

13.2.1..... Object 6071h: Target torque .. 181

13.2.2..... Object 6077h: Torque actual value .. 182

13.2.3..... Object 6080h: Max motor speed .. 182

13.2.4..... Object 2115h: ASR4 .. 183

13.3 Cyclic Synchronous Torque Mode basic example ... 183

14 Velocity Profile Mode .. 188

14.1 Overview .. 188

14.1.1..... Controlword in Profile Velocity mode .. 188

14.1.2..... Statusword in Profile Velocity mode .. 188

14.2 Velocity Mode Objects .. 188

14.2.1..... Object 6069h: Velocity sensor actual value ... 188

14.2.2..... Object 606Bh: Velocity demand value ... 189

14.2.3..... Object 606Ch: Velocity actual value .. 189

14.2.4..... Object 606Dh: Velocity window ... 189

14.2.5..... Object 606Eh: Velocity window time .. 189

14.2.6..... Object 606Fh: Velocity threshold ... 190

14.2.7..... Object 60FFh: Target velocity .. 190

© Technosoft 2024 9 CANopen Programming

14.2.8..... Object 60F8h: Max slippage .. 190

14.2.9..... Object 2005h: Max slippage time out ... 191

14.2.10 ... Object 2087h20F: Actual internal velocity from sensor on motor ... 191

14.3 Speed profile example .. 192

15 Electronic Gearing Position (EGEAR) Mode ... 194

15.1 Overview .. 194

15.1.1..... Controlword in electronic gearing position mode (slave axis) ... 194

15.1.2..... Statusword in electronic gearing position mode .. 195

15.2 Gearing Position Mode Objects ... 195

15.2.1..... Object 201Eh: Master position ... 195

15.2.2..... Object 2010h: Master settings ... 195

15.2.3..... Object 2012h: Master resolution .. 196

15.2.4..... Object 2013h: EGEAR multiplication factor ... 196

15.2.5..... Object 2017h: Master actual position ... 196

15.2.6..... Object 2018h: Master actual speed ... 197

15.2.7..... Object 201Dh: External Reference Type ... 197

15.3 Electronic gearing through CAN example ... 197

16 Electronic Camming Position (ECAM) Mode .. 199

16.1 Overview .. 199

16.1.1..... Controlword in electronic camming position mode .. 199

16.1.2..... Statusword in electronic camming position mode ... 200

16.2 Electronic Camming Position Mode Objects .. 200

16.2.1..... Object 2019h: CAM table load address ... 200

16.2.2..... Object 201Ah: CAM table run address .. 200

16.2.3..... Object 201Bh: CAM offset ... 200

16.2.4..... Object 206Bh: CAM: input scaling factor ... 201

16.2.5..... Object 206Ch: CAM: output scaling factor ... 201

16.2.6..... Building a CAM profile and saving it as an .sw file example ... 201

16.2.6.1 Extracting the cam data from the motion and setup .sw file .. 205

16.2.6.2 Downloading a CAM .sw file with objects 2064h and 2065h example .. 205

16.3 Electronic camming through CAN example .. 206

17 External Reference Position Mode .. 208

17.1 Overview .. 208

17.1.1..... Controlword in external reference position mode .. 208

17.1.2..... Statusword in external reference position mode ... 208

17.2 External Reference Position Mode Objects ... 208

17.2.1..... Object 201Ch: External On-line Reference .. 208

17.3 External reference position profile example ... 209

18 External Reference Speed Mode .. 210

18.1 Overview .. 210

18.1.1..... Controlword in external reference speed mode .. 210

18.1.2..... Statusword in external reference speed mode .. 210

18.2 External reference speed mode objects .. 210

18.2.1..... Object 201Ch: External On-line Speed Reference .. 210

18.3 External reference speed profile example ... 211

19 External Reference Torque Mode .. 213

19.1 Overview .. 213

© Technosoft 2024 10 CANopen Programming

19.1.1..... Controlword in external reference torque mode .. 213

19.1.2..... Statusword in external reference torque mode ... 213

19.2 External reference torque mode objects ... 213

19.2.1..... Object 201Ch: External On-line Torque Reference ... 213

19.2.2..... Object 6077h: Torque actual value .. 214

19.2.3..... Object 207Eh: Current actual value ... 214

19.3 External reference torque profile example .. 214

20 Touch probe functionality .. 216

20.1 Overview .. 216

20.2 Touch probe objects ... 216

20.2.1..... Object 60B8h: Touch probe function ... 216

20.2.2..... Object 60B9h: Touch probe status .. 217

20.2.3..... Object 60BAh: Touch probe 1 positive edge.. 217

20.2.4..... Object 60BBh: Touch probe 1 negative edge .. 217

20.2.5..... Object 60BCh: Touch probe 2 positive edge ... 218

20.2.6..... Object 60BDh: Touch probe 2 negative edge .. 218

20.2.7..... Object 2104h24F: Auxiliary encoder function ... 218

20.2.8..... Object 2105h25F: Auxiliary encoder status .. 219

20.2.9..... Object 2106h26F: Auxiliary encoder captured position positive edge .. 219

20.2.10 ... Object 2107h27F: Auxiliary encoder captured position negative edge... 220

20.3 Touch probe example ... 220

21 Data Exchange between CANopen master and drives 222

21.1 Checking Setup Data Consistency .. 222

21.2 Image Files Format and Creation ... 222

21.3 Data Exchange Objects .. 222

21.3.1..... Object 2064h: Read/Write Configuration Register ... 222

21.3.2..... Object 2065h: Write 16/32 bits data at address set in Read/Write Configuration Register 223

21.3.3..... Object 2066h: Read 16/32 bits data from address set in Read/Write Configuration Register 223

21.3.4..... Object 2067h: Write data at specified address .. 224

21.3.4.1 Writing 16 bit data to a specific address using object 2067h example ... 224

21.3.5..... Object 2069h: Checksum configuration register .. 224

21.3.6..... Object 206Ah: Checksum read register ... 225

21.4 Downloading an image file (.sw) to the drive using CANopen objects example
 225

21.5 Downloading an image file (.sw) to the drive using CANopen objects C# example
code 226

21.5.1..... The main script code ... 226

21.5.2..... The function Write_SWfile code .. 227

21.6 Checking and loading the drive setup via SW file using CANopen commands
example. ... 228

21.7 SW file Checksum calculation C# example code .. 229

21.7.1..... The checksum calculation code .. 229

22 Advanced features .. 231

22.1 Using EasyMotion Studio II .. 231

22.1.1..... Starting a new project ... 231

22.1.2..... Choosing the drive, motor and feedback configuration ... 232

22.1.3..... Downloading setup data to drive/motor ... 232

22.2 Using TML Functions to Split Motion between Master and Drives 233

22.2.1..... Build TML functions within EasyMotion Studio II ... 233

© Technosoft 2024 11 CANopen Programming

22.2.2..... TML Function Objects ... 233

22.2.2.1 Object 2006h: Call TML Function .. 233

22.3 Executing TML programs ... 234

22.3.1..... Object 2077h: Execute TML program .. 234

22.4 Loading Automatically Cam Tables Defined in EasyMotion Studio II 234

22.4.1..... CAM table structure .. 235

22.5 Customizing the Homing Procedures .. 235

22.6 Customizing the Drive Reaction to Fault Conditions ... 235

© Technosoft 2024 12 CANopen Programming

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must
rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for
any loss or damage caused by any error or omission in the work, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any
means, electrical or mechanical including photocopying, recording or by any information-retrieval system without
permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

About This Manual

This manual provides comprehensive guidance on programming the iPOS and Micro families of intelligent drives using
the CANopen protocol. These drives adhere to the CiA 301 v4.2 application layer and communication profile, the CiA
WD 305 v2.2.130F Layer Setting Services, and the CiA DSP 402 v4.0 device profile for drives and motion control. The
latter is now included in international standards IEC 61800-7-1 Annex A, IEC 61800-7-201, and IEC 61800-7-301.
Additionally, the manual details the object dictionary associated with these profiles.
This guide also explains how to integrate Technosoft Motion Language (TML) commands with CANopen protocol
commands to distribute application logic between the CANopen master and Technosoft drives. By leveraging this
combination, users can achieve a versatile and efficient control system tailored to their specific needs.
To operate the Technosoft drives effectively, users must complete the following three steps:

❑ Step 1 Hardware installation
❑ Step 2 Drive setup using Technosoft EasyMotion Studio II software for drive commissioning
❑ Step 3 Motion programming using one of the options:

❑ A CANopen master
❑ The drives built-in motion controller executing a Technosoft Motion Language (TML) program

developed using Technosoft EasyMotion Studio II software
❑ A TML_LIB motion library for PCs (Windows or Linux)
❑ A TML_LIB motion library for PLCs
❑ A distributed control approach which combines the above options, like for example a host calling motion

functions programmed on the drives in TML

This manual covers an introductory part of Step 2 and Step 3/ Motion programming using the CANopen protocol in
detail. For Step 1, please consult the drive User Manual, where a detailed hardware installation is described.

Scope of This Manual

This manual applies to the iPOS and Micro families of Technosoft intelligent drives.

Notational Conventions

This document uses the following conventions:

TML – Technosoft Motion Language

iPOS – a Technosoft drive family, the code is usually iPOSxx0x xx-CAN

Micro – a Technosoft drive family, the code is usually Micro48xx xx-CAN

GUI – Graphical User Interface
IU – drive/motor internal units
IP – Interpolated Position
RegisterY.x- bit x or register Y; Example: Controlword.5 – bit 5 of Controlword data
cs – command specifier
CSP – Cyclic Synchronous Position
CSV – Cyclic Synchronous Velocity
CST – Cyclic Synchronous Torque
Axis ID or CAN ID or COB ID – the unique number allocated to each drive in a network.
RO – read only
RW – read and write
SW – software
H/W or HW - hardware

© Technosoft 2024 13 CANopen Programming

Related Documentation

EasyMotion Studio II – Quick Setup and Programming Guide (P091.034.ESM II -
Quick.Setup.and.Programming.Guide.xxxx) – describes the compatible software installation, drive software
setup commissioning, introduction to TML motion programming and motion evaluation tools.

Technical Reference Manual of each iPOS or Micro drive version – describes the hardware including the technical
data, the connectors, the wiring diagrams needed for installation and detailed setup information.

TML_LIB v2.0 (part no. P091.040.v20.UM.xxxx) – explains how to program in C, C++, C#, Visual Basic or Delphi
Pascal a motion application for the Technosoft intelligent drives using TML_LIB v2.0 motion control library for
PCs. The manual includes over 40 ready-to-run examples that can be executed on Windows or Linux (x86 and
x64)

TML_LIB_LabVIEW v2.0 (part no. P091.040.LABVIEW.v20.UM.xxxx) – explains how to program in LabVIEW a
motion application for the Technosoft intelligent drives using TML_LIB_LabVIEW v2.0 motion control library for
PCs. The manual includes over 40 ready-to-run examples.

TML_LIB_S7 (part no. P091.040.S7.UM.xxxx) – explains how to program a PLC Siemens series S7-300 or S7-400
with a motion application for the Technosoft intelligent drives using TML_LIB_S7 motion control library. The
manual includes over 40 ready-to-run examples. The library is PLCOpen compatible.

TML_LIB_CJ1 (part no. P091.040.CJ1.UM.xxxx) – explains how to program a PLC Omron series CJ1 with a motion
application for the Technosoft intelligent drives using TML_LIB_CJ1 motion control library for PCs. The manual
includes over 40 ready-to-run examples. The library is PLCOpen compatible.

TML_LIB_X20 (part no. P091.040.X20.UM.xxxx) – explains how to program in a PLC B&R series X20 a motion
application for the Technosoft intelligent drives using TML_LIB_X20 motion control library for PLCs. The
TML_LIB_X20 library is IEC61131-3 compatible

TechnoCAN (part no. P091.063.TechnoCAN.UM.xxxx) – presents TechnoCAN protocol – an extension of the
CANopen communication profile used for TML commands

If you Need Assistance …

If you want to … Contact Technosoft at …

Visit Technosoft online

World Wide Web: http://www.technosoftmotion.com/

Receive general information
or assistance (see Note)

Ask questions about product
operation or report suspected
problems (see Note)

Make suggestions about,
or report errors in documentation.

World Wide Web: http://www.technosoftmotion.com/

Email: sales@technosoftmotion.com

Tel: +41 (0)32 732 5500
Email: support@technosoftmotion.com

Mail: Technosoft SA

 Avenue des Alpes 20

 Ch-2000 Neuchatel, NE

 Switzerland

http://www.technosoftmotion.com/
http://www.technosoftmotion.com/
mailto:support@technosoftmotion.com

© Technosoft 2024 14 CANopen Programming

1 Getting Started

1.1 Setting up the drive using EasyMotion Studio II

1.1.1 What is EasyMotion Studio II?

Technosoft provides the EasyMotion Studio II software to facilitate the commissioning and programming of its iPOS
and Micro drive families. This application is available in two versions: LITE and FULL, each tailored to address specific
commissioning and motion programming needs.

The LITE version is designed to simplify the setup process for Technosoft drives, offering a quick and straightforward
solution for commissioning. It enables users to generate setup data that can be saved directly into the drive’s EEPROM
(non-volatile memory) or stored as a file on a PC. Upon power-up, the drive automatically initializes using the setup data
from the EEPROM, ensuring a seamless startup process. Furthermore, this version allows users to retrieve setup
configurations from previously programmed drives, providing flexibility for system diagnostics and modifications. The
LITE version is available as a free download from the Technosoft website and is particularly suited for applications
where motion programming is handled externally, such as via a CANopen master.

The FULL version, in addition to the capabilities of the LITE version, supports the development of complex motion
programs using the Technosoft Motion Language (TML), which is executed directly by the drive’s integrated motion
controller. The software includes a Motion Wizard, a user-friendly graphical tool that generates TML instructions
automatically, eliminating the need for users to manually write code.

Using TML, users can:

❑ Set various motion modes

❑ Change the motion modes and/or the motion parameters

❑ Execute homing sequences

❑ Control the program flow through:

o Conditional jumps and calls of TML functions

o Interrupts generated on pre-defined or programmable conditions (protections triggered, transitions of limit
switch or capture inputs, etc.)

o Waits for programmed events to occur

❑ Handle digital I/O and analogue input signals

❑ Execute arithmetic and logic operations

The output from EasyMotion Studio II, in both versions, includes the setup data required for commissioning and, in the
case of the FULL version, the TML motion program. This application data can be loaded into the drive’s EEPROM or
saved for later use. The FULL version also facilitates distributed intelligence by allowing users to program drives to
perform complex tasks autonomously, reducing the workload on the master controller and enabling efficient multitasking
in advanced systems.

Both versions of EasyMotion Studio II include powerful evaluation tools such as a Data Logger for capturing and
analyzing drive performance, Control Panels for real-time interaction, and a Command Interpreter for executing and
testing individual commands.

It is important to note that the LITE version can be upgraded to the FULL version by entering a license key obtained
from Technosoft. This flexibility allows users to start with the LITE version and scale up to the advanced capabilities of
the FULL version as their system requirements evolve.

1.1.2 Installing EasyMotion Studio II

The EasyMotion Studio II is available as a free download from the Technosoft website (link). It can be installed as
either the LITE version (free) or the FULL version (requires a serial number for activation).

The LITE version provides all the necessary tools for drive and motor commissioning. It includes features such as the
Data Logger, Scope, and Control Panels, which are essential for evaluating performance or debugging applications as
needed.

The FULL version, in addition to the capabilities of the LITE version, enables the downloading of TML programs to the
drive. This unlocks the full potential of the drive’s built-in motion controller, allowing users to implement complex motion
applications directly at the drive level or distribute intelligence between the master and the drive for advanced control
systems.

https://technosoftmotion.com/THS_INTERNAL/P034-ESM2/EasyMotion_2_demo.exe

© Technosoft 2024 15 CANopen Programming

Figure 1.1.1. EasyMotion Studio II – Version selection

The Full version can be activated any time by entering the Registration info in the Settings dialogue that can be opened
from the EasyMotion Studio II splash screen.

Figure 1.1.2 – Registration info in the Settings window

The Registration info window can also be accessed through the Help menu in the project window.

Figure 1.1.3 – Access the Registration info window via the Help menu

EasyMotion Studio II includes an Update via Internet tool. This feature allows users to check if their software is up-to-
date and, if updates are available, download and install the latest version.

1.1.3 Establishing communication with the drive

EasyMotion Studio II establishes communication with the drive using one of the following interfaces: RS-232 serial link,
USB, or CAN. The appropriate interface depends on the specific drive model and its supported communication
protocols. For detailed information about the supported protocols, refer to the Drive Technical Reference Manual.

© Technosoft 2024 16 CANopen Programming

1.1.3.1 Connecting via RS-232

To connect to a drive using EasyMotion Studio II, begin by creating a New project. During this process, you’ll select
the communication channel and configure the necessary parameters. Once your settings are in place, use the Scan
Ports option to refresh the list of available ports and choose the correct one for your setup.

If your PC doesn’t have a built-in serial port, a USB-to-RS232 adapter can be used. For drives or Starter Kit boards
equipped with a 9-pin serial port, simply connect the drive to your PC using a standard 9-wire, non-inverting serial cable.

Figure 1.1.4. EasyMotion Studio II - Opening window

Once the physical connection is established, click Scan for Drives to initiate the detection process. EasyMotion Studio
II will search for connected drives and display their details in a table, including the drive name, Axis ID, and firmware
version. If no drives are detected, the software will display an error message, prompting you to double-check your
connections and configuration settings before trying again.

If you don’t have a drive connected, EasyMotion Studio II offers the flexibility to work offline. By selecting the Work
Offline option, you can choose a model from a predefined list and continue configuring your project without needing a
physical connection.

Figure 1.1.5. EasyMotion Studio II – Scan results

For drives connected within a CAN network, you can use the via CAN bus option to enable automatic detection of all
connected drives. However, this feature requires certain conditions to be met: all drives in the network must use the
same communication protocol (either TMLCAN or CANopen), operate at the same CAN baud rate (the default is 500
kbps), and have unique AxisIDs.

Technosoft drives with a CAN interface utilize a unique AxisID (address) for serial communication. Additional
information on selecting the AxisID can be found in Chapter Changing the drive Axis ID (Node ID).

To open an existing project in EasyMotion Studio II, click the Open Project button to browse and select a project from
a specific location. If you need to restore a project archive, including one created with the earlier version of EasyMotion
Studio, use the arrow next to the Restore from Project Archive option to access and import the desired file.

Note: The file extension for EasyMotion Studio I archives is ̀ *.m.zip`, while EasyMotion Studio II archives use the ̀ *.e2p`
extension.

© Technosoft 2024 17 CANopen Programming

1.1.4 Choosing the drive and motor configuration

Once the drive has been successfully identified, key information such as its name, AxisID, and firmware version will be
displayed. At this point, you can select the desire motor technology. After finalizing the drive and motor technology
selection, simply click the green tick button in the Motor Selection group box to proceed. This action concludes the
selection wizard and transitions you to the project window, where you can continue with advanced configuration and
programming tasks.

Figure 1.1.6. EasyMotion Studio II – Drive and Motor selection

When you start a new project in EasyMotion Studio II, the software automatically creates an initial application as a
starting point. Additional applications can be added later using the New or Duplicate options available in the
Application menu.

Each application is organized into three main branches:

❑ Setup – Dedicated to configuring the drive and motor settings.

❑ Motion – Reserved for application development, accessible only in the full version of EasyMotion Studio II.

❑ Memory Settings – Provides an overview of memory usage and tools for configuring memory-related
parameters.

The Setup branch, essential for initializing the drive and motor, will be detailed in the following chapters.

1.1.5 Commissioning the drive

The Setup branch is designed to guide you through the drive commissioning process, offering two modes: Quick Setup
and Advanced Setup. You can select your preferred mode using the radio button located at the top of the Setup tree
section.

Figure 1.1.7. EasyMotion Studio II – Quick Setup vs. Advanced setup

© Technosoft 2024 18 CANopen Programming

The Quick Setup mode is ideal for scenarios where all connections have already been validated and the motor and
feedback parameters are well understood. This simplified approach enables rapid commissioning, saving time in well-
prepared environments. However, for new projects, it is strongly recommended to use the Advanced Setup mode. This
mode provides a comprehensive framework for conducting various tests to validate the motor, feedback, and drive
connections. It ensures that all components are functioning correctly, reducing the risk of errors during operation.

Regardless of the selected setup structure (quick or advanced), the drive commissioning procedure assumes checking
all the Setup tree branches (one by one, from top to the bottom), set the needed parameters and enable/disable the
application related options.

The Mechanical Configuration section, available in both Quick and Advanced Setup modes, defines the motor-to-load
transmission type and ratio, including configurations for rotary-to-rotary, rotary-to-linear, or linear-to-linear systems. If
the motor includes an electromechanical brake, this section allows configuring its control.

Figure 1.1.8. EasyMotion Studio II – Motor Setup

The Motor Setup page provides two main tabs: Configuration and Tests.

In the Configuration tab, you can:

❑ Select the Motor: Load parameters from a predefined database or save custom configurations for future use.
❑ Set Main Parameters: Define values such as nominal and peak current, as well as the number of motor pole

pairs, in line with the motor data sheet.
❑ Add Additional Parameters: Optionally input data like torque constant, phase resistance, inductance, rotor

inertia, and temperature sensor type. Built-in tests can identify these if not available from the motor data sheet.

The Tests tab allows testing the motor phases connection, detect the number of the motor pole pairs and identify the
motor winding resistance and inductance.

Figure 1.1.9.EasyMotion Studio II – Motor Tests

The Feedback Setup page is used to configure motor and load feedback sensors.

© Technosoft 2024 19 CANopen Programming

❑ The Configuration tab adapts to the selected feedback type and guides users to input sensor-specific
parameters, referencing the sensor’s data sheet.

❑ The Tests tab (Advanced Setup mode) allows you to validate sensor connections and detect sensor
characteristics, such as resolution or alignment.

Figure 1.1.10.EasyMotion Studio II – Feedback Setup

The Inputs/Outputs page in EasyMotion Studio II simplifies configuring the drive’s input and output signals. By default,
Technosoft drives include general-purpose inputs/outputs and some with specialized functions. These specialized
functions can be disabled by setting them to "General Purpose Input/Output." Additionally, the Analog Inputs group box
allows the drive to read analog voltage signals, configurable for 0–5 V or ±10 V ranges.

The Control Settings section enables selecting the desired control mode — Position, Speed, or Torque — and
configuring the control structure, such as position control with or without an active speed controller.

In Position mode, the drive activates internal current and position loops, supporting various position profiles like
trapezoidal, S-curve, PT, PVT, and external commands. Speed mode engages the current and speed loops, enabling
precise speed profile execution. For Torque mode, only the current controller remains active, providing direct control of
the motor's torque output.

The External Reference section, available only in Advanced Setup mode, allows the drive to interpret an external signal
(digital or analog) and convert it into a position, speed, or torque reference.

Figure 1.1.11.EasyMotion Studio II – Analog external reference settings

© Technosoft 2024 20 CANopen Programming

When Digital Reference is selected, the drive can process Pulse & Direction signals or a quadrature incremental
encoder input, calculating the reference using a programmable gear ratio.

When Analog Reference is selected, the drive reads a voltage signal, either 0 V to 5 V or ±10 V (refer to the user
manual for supported ranges), and converts it into a position, speed, or torque reference based on the selected control
mode.

Enabling the Automatically Activated After Power On option ensures that external reference mode is automatically
engaged upon power-up, provided AUTORUN mode is enabled and no application program is stored in the drive's
memory.

The Application Settings section, available in Advanced Setup mode, provides tools for configuring commutation
methods, startup modes, timing adjustments, and autorun functionality for CANopen.

Figure 1.1.12.EasyMotion Studio II – Feedback Setup

You can select the commutation method based on the desired motor control strategy:

❑ In Trapezoidal mode, the motor functions as a brushless DC motor, with Hall sensors managing commutation.

❑ Sinusoidal mode treats the motor as a Permanent Magnet Synchronous Motor (PMSM), using Field-Oriented
Control (FOC). This mode requires precise rotor position detection, performed during startup.

The FOC algorithm is possible only if the rotor position is precisely known. The drive checks it after Power On or Reset,
through a start method. This method can be selected / configured though the Start mode group box.

Within the timings section, you can adjust:

❑ PWM frequency, which should remain within the safe range of 20 kHz to 80 kHz.

❑ Sampling periods, with defaults set to 0.1 ms for the fast loop and 1 ms for the slow loop, ensuring optimal
control system performance.

The Autorun for CANopen feature allows the drive to automatically execute the TML program at power-on or reset,
streamlining operations and reducing the need for manual intervention.

The Fieldbus Settings section, available exclusively in the Advanced setup, is essential for configuring communication
within a CANopen network. This includes:

❑ CAN Baud Rate: Selectable options include 125 kbps, 250 kbps, 500 kbps (firmware default), or 1 Mbps.

❑ Axis ID: Each drive requires a unique Axis ID (1–127 for CANopen), which can be configured either through
hardware (refer to the drive’s user manual) or via software in EasyMotion Studio II.

❑ Factor Group: Allows selecting the desired physical unit for position, speed, acceleration and jerk values. For
more details, consult chapter 0.

Important: All drives in the network must operate with the same baud rate and communication protocol while ensuring
unique Axis IDs for proper functionality.

The Protections and limits section covers motor protections and operational limits to prevent system damage during
tests or normal operation.

© Technosoft 2024 21 CANopen Programming

Figure 1.1.13.EasyMotion Studio II – Protections and limits settings

Drive Operation Parameters:

❑ Current Limit: Sets the maximum current applied to the motor, typically slightly higher than the motor's nominal
current but lower than its peak current to avoid prolonged overloads.

❑ Load Speed Limit: Restricts the load speed to protect the mechanical system and operators from unsafe
speeds.

❑ Motor Supply: Represents the voltage applied to the motor’s “Vmot” input.

Protections:

❑ Over Current: Triggers if motor current exceeds the limit for a specified time. The current value is set slightly
above the limit but below the motor's peak current.

❑ Control Error: Monitors position or speed errors and triggers if they exceed the set limits for too long.

❑ I2t Thermal Protection: Prevents motor damage from prolonged over-current operation. The drive calculates
the I2t value to ensure safe operation, limiting current if necessary.

External Chopping Resistor: Protects against overvoltage caused by energy transferred during braking or reversing
by dissipating the excess energy through a resistor.

Limits:

❑ Software Limit Switches: The software limits switches act like the hardware limit switches, when the positive
or negative limits are reached.

❑ Position Range Limits: Uses software limits to restrict the movement using a specified position range.

The Controllers Section in EasyMotion Studio II provides tools for configuring controller parameters, detecting system
inertia (available in Advanced setup mode), and tuning controllers either automatically or manually.

Figure 1.1.14. EasyMotion Studio II –Automatic tuning page

© Technosoft 2024 22 CANopen Programming

The Automatic Tuning option simplifies parameter configuration based on the desired system response. Pressing the
START button initiates the tuning process. Once completed successfully, a “Automatic tuning done!” message
appears in the progress bar, along with the detected or computed parameters displayed in the Controllers and Tuning
Performances section.

If tuning fails, a “Automatic tuning failed” message will appear, and hovering over the progress bar provides additional
information about the issue.

Advanced Tuning Tabs:

❑ Identify: Displays detected data used for tuning and allows modifications to identification methods for repeating
the process.

❑ Tune: Shows computed parameters and the estimated controller response, enabling parameter adjustments
or re-tuning as needed.

❑ Test: Allows testing the controller’s response and refining parameters for optimal performance.
Note: To achieve the best system performance, ensure the load is connected to the motor during the tuning process.

Figure 1.1.15. EasyMotion Studio II – Advanced tuning tabs

The Manual Tuning & Test section enables users to run current, speed, or position profiles while fine-tuning active
controller parameters. This process allows real-time monitoring and analysis of system behaviour using integrated
tools such as the logger and scope.

Figure 1.1.16. EasyMotion Studio II – Manual tuning page

Note: For detailed instructions and additional options, refer to the Help menu or click the "?" icon within the interface.

1.1.6 Downloading setup data to drive/motor

The configured setup can be transferred to the drive using the Write Setup to Drive option, accessible from the
Application menu or via the ribbon button highlighted with a red square in the image below.

© Technosoft 2024 23 CANopen Programming

Figure 1.1.17. EasyMotion Studio II - Write the setup parameters to the drive memory

Once the setup is successfully written to the drive's non-volatile memory (EEPROM), a reset is required to activate it.
The new settings will take effect at the next power-on, as the setup data is loaded into the active RAM memory used
during runtime.

1.1.7 Creating a .sw file with the setup data

After validating your setup, you can export a software file (.sw) containing all the setup data to be written into the drive’s
EEPROM. This can be done via the menu command Application | Export | EEPROM File.

The .sw file is a text file that can be opened with any text editor and contains blocks of data formatted for EEPROM
programming. Each block begins with a start address, followed by sequential data values to be written to consecutive
memory locations. The structure of the file:

❑ Start address: Indicates where the block begins in the EEPROM.
❑ Data values: Ordered sequentially, specifying what to write at each consecutive address starting from the

block’s start address.
❑ The data values are 16-bit hexadecimal numbers (maximum of 4 digits) written in right-justified format. For

example: A value of 92 is represented as 0x0092.
❑ Each data value is listed on a separate line, and blocks are separated by an empty line for clarity.

The .sw file can be programmed into a drive using two main methods:

❑ Via a CANopen Master: Using the communication objects for writing data into the drive’s EEPROM (refer to
the chapter “Data Exchange between CANopen master and drives” for detailed guidance).

❑ Using the EEPROM Programmer Tool: Available in the EasyMotion Studio II installation package, this tool
enables fast and efficient programming of .sw files into Technosoft drives. Access the tool via Utilities |
EEPROM Programmer.

The EEPROM Programmer is useful for repetitive programming tasks during production, ensuring a simplified and
reliable programming of setup data into multiple drives.

1.1.8 Checking and updating setup data via .sw files with a CANopen master

A CANopen master can be programmed to automatically verify that all Technosoft drives on the network have the correct
setup data stored in their EEPROM after power-on. This verification involves comparing the EEPROM contents of each
drive with their corresponding reference .sw files, which must first be loaded into the CANopen master.

The most efficient method for this comparison is to match the checksums calculated from the .sw file data against those
computed by the drive for the same address range. If a mismatch is detected, the CANopen master should reload the
reference .sw file into the drive to ensure consistency.

For detailed guidance on programming a .sw file into a drive and verifying its consistency against a reference file, refer
to sections 18.4 and 18.5.

1.1.9 Testing and monitoring the drive behavior

EasyMotion Studio II provides several pre-defined control panels for monitoring and diagnosing system parameters,
such as motion, drive I/O, and CANopen status. Users can customize panel content, create new panels, or import/export
existing configurations. However, for real-time data, the Logger or Scope tools are recommended.

© Technosoft 2024 24 CANopen Programming

Figure 1.1.18. EasyMotion Studio II – Predefined Control Panels

Users can modify the default content of control panels by right-clicking on the panel surface and selecting the Customize
option. Additionally, they can create new control panels or import/export existing ones via the Control Panels menu.

Figure 1.1.19. EasyMotion Studio II – Control Panels Options

The Logger allows users to configure, capture, and analyse data by selecting variables and setting acquisition
parameters through the Logger ribbon or by right-clicking on the Logger interface. Data is stored in the drive's RAM,
ensuring high accuracy but limiting the number of points due to memory constraints.

Figure 1.1.20. EasyMotion Studio II – Logger

© Technosoft 2024 25 CANopen Programming

The first step in using the Logger consist in choosing the variables and setting the acquisition parameters.

Figure 1.1.21. EasyMotion Studio II – Logger acquisition menu

The data acquisition starts automatically when running the TML application but can also be triggered manually, using
the Start button in the Logger ribbon.

Figure 1.1.22. EasyMotion Studio II – Logger operation options

The Upload data button in the Logger ribbon will start the plotting process, while the Stop data upload option stops
the uploading process, keeping on the Logger just the portion of the recording that was already plotted.

Figure 1.1.23. EasyMotion Studio II – Logger uploading cancelation

The plots can be saved, using the Save button in the Logger ribbon, as a Logger files (*.lgs), a text file (“*.txt”), an
image (“*.png”) or as an Excel files (“*.csv”).

© Technosoft 2024 26 CANopen Programming

The Scope functions as a 4-channel oscilloscope, enabling real-time monitoring of variables, parameters, registers, or
input/output statuses.

The Scope setup page can be accessed through the button in the Scope ribbon or using the right click menu and allows
configuring the 4 available channels and setting the acquisition and triggering parameters.

Figure 1.1.24. EasyMotion Studio II – Scope Setup window

The data acquisition starts when pressing the START button, in the Scope ribbon, and the information is updated
continuously until the acquisition is stopped, using the STOP button in the Scope ribbon.

Figure 1.1.25. EasyMotion Studio II – Motion evaluation using the Scope

Note: For detailed instructions and additional options, refer to the Help menu or click the "?" icon within the interface.

1.1.10 TechnoCAN Extension

In order to take full advantage of the Technosoft Motion Language (TML) integrated into intelligent drives, Technosoft
has developed TechnoCAN, an extension of the CANopen protocol. This feature enables seamless exchange of TML
commands with the drives, allowing users to inspect or reprogram any Technosoft drive on a CANopen network. With
TechnoCAN, this is easily achieved using EasyMotion Studio II, along with an RS-232 or USB connection to any drive
in the network.

TechnoCAN operates using message identifiers outside the range specified by the CANopen predefined connection set
(CiA DS301 v4.2.0). This ensures that the TechnoCAN and CANopen protocols can coexist on the same physical CAN
bus, enabling simultaneous and disturbance-free communication.

© Technosoft 2024 27 CANopen Programming

1.2 Changing the drive Axis ID (Node ID)

The Axis ID of an Technosoft drive can be set through multiple methods,:

1. Hardware Configuration - By default, the Axis ID is set to 255 and relies on hardware-based selection.
Specific steps for adjusting the Axis ID through hardware are outlined in the drive’s user manual, allowing for
configuration directly on the device.

2. Software Configuration - EasyMotion Studio II offers a simple way to assign an Axis ID within the range of 1
to 255. This can be done through the setup section of the software, enabling users to configure the ID quickly
and efficiently without relying on physical adjustments.

3. Software via CANopen Master - The Axis ID can also be set using a CANopen master through the CiA-3051
protocol, enabling centralized management of Axis IDs in networked environments.

Figure 1.2.1 EasyMotion Studio II – Setting the Axis ID

Notes:

❑ If the drive operates in CANopen mode and the Axis ID is set above 127, the drive automatically switches to
“non-configured” mode, setting the Axis ID to 255. In this mode, the drive responds exclusively to CiA-305
commands, ignoring all other CANopen messages. The Ready (green) LED flashes at 1-second intervals to
indicate this status.

❑ A drive in “non-configured” mode can exit this state by assigning a new Axis ID (1–127) via hardware or
software.

1.2.1 Axis ID Initialization on Power-On

The drive initializes its Axis ID at startup using the following process:

❑ From Setup Table: If a valid setup table exists and the "Axis ID Selection" checkbox is checked, the Axis ID
is read from the setup table. For CANopen, IDs above 127 are converted to 255, triggering “non-configured”
mode.

❑ From Last Configuration: If the setup table exists but the checkbox is unchecked, the Axis ID is set to the
last known value, either from the setup table or a CiA-305 configuration.

❑ From Inputs: If no valid setup table exists, the Axis ID defaults to the values determined by the hardware
inputs.

1.2.2 Determining an Unknown Axis ID

If the drive’s Axis ID is unknown, follow these steps:
1. Connect the drive to a PC using an RS232 or USB link.

2. Open EasyMotion Studio II and create a new project.

3. Configure the communication settings and click Scan for Drives. The software will detect and display the
drive's details, including its Axis ID.

If the drive is part of a CANbus network and direct access is difficult, connect the PC to another drive in the network via
RS232 or USB. Use the "via CAN bus" option in EasyMotion Studio II to scan all connected drives. Ensure that:

• All drives use the same communication protocol (TMLCAN or CANopen).

• The CAN baud rate matches across drives (default is 500 kbps).

• Each drive has a unique Axis ID.

1 CiA 305 protocol is available only on firmware F514x and FA01x.

© Technosoft 2024 28 CANopen Programming

This simplified approach allows you to identify and manage drives in both standalone and networked configurations
effectively.

Figure 1.2.2. EasyMotion Studio II – Detecting multiple drives in the network

1.3 Setting the current limit

One of the key protections to configure is the Current Limit (accessible via Setup | Protections and Limits), which
defines the maximum current supplied to the motor. This value is typically set slightly above the motor's nominal current
but below its peak current to prevent prolonged overloads. Alternatively, the current limit can be configured using Object
207Fh: Current limit.

Figure 1.3.1.EasyMotion Studio II – Setting the current limit

1.4 Setting the CAN baud rate

Technosoft drives support the following CAN baud rates: 125 Kbps, 250 Kbps, 500 Kbps, and 1 Mbps. You can select
the initial CAN rate after power-on using the Fieldbus Settings section, and this information is stored in the setup table.
The CAN rate is initialized according to the following algorithm:

❑ If a valid setup table exists and the Set baud rate checkbox was checked in the Fieldbus settings section,
the baud rate is read from the setup table. This value can be one of the four supported rates or the firmware
default (500 Kbps).

❑ If a valid setup table exists but the Set baud rate checkbox was unchecked, the last value set, either from the
setup table or by a CANopen master using the CiA-305 protocol, will be used.

❑ If the setup table is invalid, the baud rate will be set to the last value from a valid setup table or by a CANopen
master using the CiA-305 protocol.

❑ If no valid setup table or previous CAN rate is available, the default firmware value of 500 Kbps will be used.

Figure 1.4.1.EasyMotion Studio II – Setting the CAN baud rate

© Technosoft 2024 29 CANopen Programming

1.5 CANopen factor group setting

The factor group settings currently implemented are complying with:
- CiA-402-2 and later versions – starting with F514K / FA0xx firmware versions
- CiA-402 – for other firmware versions

1.5.1 Factor group setting - CiA-402 (obsolete)

The Fieldbus Settings section opens an interface that allows access to the scaling factors for position, speed,
acceleration and time objects. These settings are linked directly to the objects 6089h, 608Ah, 608Bh, 608Ch, 608Dh,
608Eh, 206Fh, 2070h, 6093h, 6094h, 6097h and 2071h. This means that these settings can be chosen either from Setup
or by later setting the objects themselves. The factor group dialogue can select the units to be used when writing or
reading the Position, Velocity or Acceleration objects. These settings already have a list standard units defined in the
CANopen standard CiA402 and there is the option of customization.

Figure 1.5.1. Factor group dialogue in compliance with CiA-402

In the last case, the user can set the factor numerator and divisor in order to obtain the needed scaling. The dimension
and notation index (and their linked objects) have no influence over any scaling. Their purpose is only to define an [SI]
unit name like rpm, rad, deg, etc. The factor group settings are stored in the setup table. By default, the drive uses its
internal units. The correspondence between the drive internal units and the [SI] units is presented in the drives user
manual.

For the [SI] dimension and notation index list, see Dimension/Notation Index Table.

Remarks:

• the dimension and notation index objects (6089h, 608Ah, 608Bh, 608Ch, 608Dh, 608Eh, 206Fh and 2070h) have
been classified as obsolete by the CiA 402 standard. They are now used only for legacy purposes, on CANopen
masters which still need them.

• because the drives work with Fixed 32 bit numbers (not floating point), some calculation round off errors might
occur when using objects 6093h, 6094h, 6097h and 2071h. If the CANopen master supports handling the scaling
calculations on its side, it is recommended to use them instead of using the “Factor” scaling objects.

1.5.2 Factor group setting - CiA-402-2

The Fieldbus Settings section includes an interface that enables you to select the preferred physical units for position,
speed, acceleration, and jerk values. These settings are linked directly to the objects presented in chapter 0.

The factor group that complies with CiA-402-2 is available starting with firmware version F514K/FA01A.

The factor group settings can be modified either in the Setup part of the project, or by changing the factor group objects
directly using CANopen protocol.

If the settings are changed in the Setup part, once the desired unit is selected, EasyMotion Studio automatically
computes the scaling factors according to each mechanical setup.In this case, the settings are stored in the non volatile
memory and remain active regardless of the drive state (reset, power lost, etc.).

The Factor Group should be adjusted once before any type of movement is realised and not changed during the
movement.

© Technosoft 2024 30 CANopen Programming

Figure 1.5.2. Factor group dialogue in compliance with CiA-402-2

In the Fieldbus Settings section can be found all the objects that corresponds to the specific unit and the scalling factors
computed by EasyMotion Studio II according to the feedback, transmission and slow loop period.

If other units than the standardized option are needed, the scaling can be obtained also in the setup part if “User
defined” option is selected.
By default, the drive uses its internal units (IU). The correspondence between the drive internal units and the [SI] units
is presented in the Help menu of EasyMotion Studio II.

1.6 Using the built-in Motion Controller and TML

One of the key advantages of the Technosoft drives is their capability to execute complex motions without requiring an
external motion controller. This is possible because Technosoft drives offer in a single compact package both a state of
art digital drive and a powerful motion controller.

1.6.1 Technosoft Motion Language Overview

Programming motion directly on a Technosoft drive requires to create and download a TML (Technosoft Motion
Language) program into the drive memory. The TML allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

▪ Conditional jumps and calls of TML functions

▪ Interrupts generated on pre-defined or programmable conditions (protections triggered, transitions of limit
switch or capture inputs, etc.)

▪ Waits for programmed events to occur

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start simultaneously motion
sequences on all the axes from the group

• Synchronize all the axes from a network

In order to program a motion using TML you need EasyMotion Studio II FULL version.

Chapter 19 describes in detail how the TML features can be combined with the CANopen programming.

© Technosoft 2024 31 CANopen Programming

2 Layer Setting Services (LSS protocol) 2F

1

By using layer setting services, the CANopen node-ID and/or the bit timing settings of a LSS slave device may be
configured via the CAN network without using any hardware components such as jumpers or DIP-switches. The
CANopen device that can configure other devices via CANopen network is called a LSS Master. There must be only
one (active) LSS master in a network. The CANopen device that will be configured by the LSS Master via CANopen
network is called a LSS Slave.

An LSS Slave can be identified by its unique LSS address. The LSS address consists of the sub objects Vendor ID,
Product Code, Revision Number and Serial Number of the CANopen “Identity Object” with index 1018h. In the
network, there must not be other LSS Slaves possessing the same LSS address.

With this unique LSS address an individual CANopen device can be allocated within the network. The Node ID is valid
if it is in the range of 0x01…0x7F. The value 0xFF indicates not configured CANopen devices.

Communication between LSS Master and LSS Slaves is accomplished by LSS protocols, which use only two COB-IDs:

• LSS master messages from LSS Master to LSS Slaves (COB-ID 0x7E5)

• LSS slave messages from the LSS Slaves to LSS Master (COB-ID 0x7E4).

2.1 Overview

The table below provides an overview on the LSS commands, including details on whether they may be used in states
“Waiting” and “Configuration”. To change the LSS state, the LSS services Switch State Global or Switch State
Selective may be used.

Table 2.1 - Drive State Transitions

Command
Specifier

(cs)
Services

LSS
waiting
state

LSS
configuration
state

0x04 Switch State Global yes yes

0x40

Switch state selective
procedure

Vendor ID yes no

0x41 Product Code yes no

0x42 Revision Number yes no

0x43 Serial Number yes no

0x11 Configure node-ID no yes

0x13 Configure bit timing parameters no yes

0x15 Activate bit timing parameters no yes

0x17 Store configuration no yes

0x5A

Inquire LSS address
protocol

Identity Vendor ID no yes

0x5B Identity Product Code no yes

0x5C Identity Revision Number no yes

0x5D Identity Serial Number no yes

0x5E Inquire node-ID protocol no yes

0x46

Identify remote slave
procedure

Vendor ID yes yes

0x47 Product Code yes yes

0x48 Revision Number Low yes yes

0x49 Revision Number High yes yes

0x4A Serial Number Low yes yes

0x4B Serial Number High yes yes

0x4C Identify non-configured Remote Slave yes yes

2.2 Configuration services

The LSS configuration services are used to configure the node-ID or bit rate.

2.2.1 Switch State Global

Switches all LSS slave devices in the network into LSS “Waiting” state or LSS “Configuration” state.

The service is unconfirmed.

cs 0x04 Command Specifier for Switch State Global command

mode
0 Switch to LSS state waiting

1 Switch to LSS state configuration

1 LSS protocol is available only in the F514x and FA01x firmware versions

© Technosoft 2024 32 CANopen Programming

Figure 2.2.1. LSS – Switch State Global

2.2.2 Switch State Selective

Changed state of one LSS Slave from “Waiting” to “Configuration”.

LSS command specifier can be:

- 0x40 to submit the Vendor ID,
- 0x41 to submit the Product Code,
- 0x42 to submit the Revision Number,
- 0x43 to submit the Serial Number

To selectively switch a target LSS slave to “Configuration” state, all the Switch State Selective commands must be sent
and must contain the same data as found in the “Identity Object”, index 1018h, of the target drive.

The service is confirmed. The LSS slave sends the command specifier 0x44 meaning it has entered “Configuration”
state.

Figure 2.2.2. LSS – Switch State Selective

2.2.3 Configure Node ID

Configures the Node ID (of value 1…127 or 255).

The LSS Master can set the LSS Slave’s Node ID only in LSS configuration state. The LSS Master is responsible to
switch a single LSS Slave into LSS state “Configuration” (with Switch State Selective) before requesting this service.
With this service, the LSS Salve’s Node ID can take only values between 1 and 127 (valid Node ID) or 255 (set slave
to not-configured).

If the Node ID is set to 255 (0xFF), the LSS slave remains in NMT Initialization sub-state “reset communication” and
waits in LSS waiting state for further commands. During this waiting state, the LSS slave is not allowed to send
messages, except when LSS replies are needed.

To activate the new node ID, the LSS master has to send the NMT command “Reset communication”. To store the new
node ID in the non-volatile memory, the LSS master has to use LSS Store Configuration protocol before resetting the
communication or the node.

cs 0x11 Command specifier for configure node-ID protocol

mode
0 Protocol successfully completed

1 Node ID out of range value

specific error always 0

© Technosoft 2024 33 CANopen Programming

Figure 2.2.3. LSS – Configure Node ID

2.2.4 Configure Bit Timing Parameters

By means of the service configure bit timing parameters, the LSS Master can configure new bit timing on a single or
multiple LSS Slaves. The new bit timing will be active only after LSS Activate Bit Timing Parameters command or LSS
Store Configuration Protocol followed by node reset commands.

cs 0x13 Command specifier for configure bit timing parameters protocol

table selector always 0

table index CAN bit rate codes

error code
0 Protocol successfully completed

1 Node ID out of range value

specific error always 0

Figure 2.2.4. LSS – Configure Bit Timing Parameters

Table 2.2 – Supported CAN bitrates

Value Bit Rate

0 1 Mbit/s

2 500 Kbit/s

3 250 Kbit/s

4 125 Kbit/s

2.2.5 Activate Bit Timing Parameters

Activates bit timing parameters selected with Configure Bit Timing Parameters service.

Switch delay = specifies the duration [in ms] of the two delay periods of equal length. The first period is until the bit
timing parameters switch is done. The second period is the time before sending any new CAN message.
They are necessary to avoid operating the network with different bit rates.

After receiving an activate bit timing command, the LSS slave stops communication. After the first switch delay,
communication is switched to the new bit rate. After the second delay, the LSS slave is allowed to transmit messages
with the new bit rate active.

Figure 2.2.5. LSS – Activate Bit Timing Parameters

Figure 2.2.6. LSS – LSS master and LSS slave timings

© Technosoft 2024 34 CANopen Programming

2.2.6 Store Configuration Protocol

The pending node-ID and bit rate are copied to the persistent node-ID and bit rate in the non-volatile memory. The
result is confirmed by the LSS slave with success or failure message.

Figure 2.2.7. LSS – Store Configuration

2.2.7 Inquire Identity Vendor ID

Reads Vendor ID of LSS slave. The same value can be found in Identity Object, index 1018h, Sub-index 01 of target
slave.

Figure 2.2.8. LSS – Inquire Identity Vendor ID

2.2.8 Inquire Identity Product Code

Reads Product Code of LSS slave. The same value can be found in Identity Object, index 1018h, Sub-index 02 of target
slave.

Figure 2.2.9. LSS – Inquire Identity Product Code

2.2.9 Inquire Identity Revision Number

Reads Revision Number of LSS slave. The same value can be found in Identity Object, index 1018h, Sub-index 03 of
target slave.

Figure 2.2.10. LSS – Inquire Identity Revision Number

cs 0x17 Store Configuration

error code always 0

specific error always 0

© Technosoft 2024 35 CANopen Programming

2.2.10 Inquire Identity Serial Number

Reads Serial Number of LSS slave. The same value can be found in Identity Object, index 1018h, Sub-index 04 of target
slave.

Figure 2.2.11. LSS – Inquire Identity Serial Number

2.2.11 Inquire Identity Node ID

Reads active Node ID of LSS slave.

Figure 2.2.12. LSS – Inquire Identity Node ID

2.2.12 Identify Remote Slave

Identifies LSS Salves in the CAN network. The LSS master sends identify remote slave commands containing a single
Vendor ID, a single Product Code, and a range of Revision Numbers and Serial Numbers. All LSS Slaves that are within
these values (including the boundaries) answer with an Identify Remote Slave response (cs=0x4F). An LSS Slave
answers, only after all Identify commands are sent and it is within the correct parameters.

With this protocol, a network search can be implemented on the LSS master. With this method, the LSS address range
is set to maximum values, and identifies the number of remote slaves in the network. This range will be split in two sub-
areas and identify the slaves again. This process will be repeated until all LSS Slaves have been identified.

Figure 2.2.13. LSS – Identify Remote Slave

2.2.13 Identify non-configured Remote Slave

Allows the LSS master to detect non-configured slave devices in the network. All LSS Slaves without a configured Node
ID (0xFF) will answer with a 0x50 command specifier response.

Figure 2.2.14. LSS – Identify non-configured Remote Slave

© Technosoft 2024 36 CANopen Programming

3 CAN and the CANopen protocol

CAN (Controller Area Network) is a serial bus system used in a broad range of automation control systems. The CAN
specifies the data link and the physical connection over which lays the CANopen, a high level protocol specifying how
various types of devices can use the CAN network.

3.1 CAN Architecture

CAN provides distributed control of the motion application, the control loops are closed locally not on the master
controller. The master controller coordinates multiple devices through the commands it sends and receives information
about the status of the devices.

Technosoft extended the concept of distributed motion application allowing splitting the motion application between the
Technosoft drives and the CANopen master. Using TML the user can build complex motion applications locally, on each
drive, leaving on the CANopen master only a high level motion application and thus reducing the CAN master
complexity. The master has the vision of the motion application, specific tasks being executed on the Technosoft drives.

3.2 Accessing CANopen devices

A CANopen device is controlled through read/write operations to/from objects performed by a CANopen master (PC or
PLC).

3.2.1 Object dictionary

The Object Dictionary is a group of objects that describes the complete functionality of a device by way of communication
objects and it is the link between the communication interface and the application. All communication objects of a device
(application data and configuration parameters) are described in the Object Dictionary in a standardized way.

3.2.2 Object access using index and sub-index

The objects defined for a device are accessed using a 16-bit index and an 8-bit sub-index. In case of arrays and records
there is an additional sub-index for each element of the array or record.

© Technosoft 2024 37 CANopen Programming

3.2.3 Service Data Objects (SDO)

Service Data Objects are used by CANopen master to access any object from the drive’s Object Dictionary. Both
expedited and segmented SDO transfers are supported (see DS301 v4.2.0 for details). The SDOs are typically used for
drive configuration after power-on, for PDO mapping and for infrequent low priority communication.

SDO transfers are confirmed services. In case of an error, an Abort SDO message is transmitted with one of the codes
listed in Table 3.2.1.

Table 3.1 – SDO Abort Codes

Abort code Description

0503 0000h Toggle bit not alternated

0504 0001h Client/server command specifier not valid or unknown

0601 0000h Unsupported access to an object

0602 0000h Object does not exist in the object dictionary

0604 0041h Object cannot be mapped to the PDO

0604 0042h The number and length of the objects to be mapped would exceed PDO length

0604 0043h General parameter incompatibility reason

0604 0047h General internal incompatibility error in the device

0607 0010h Data type does not match, length of service parameter does not match

0607 0012h Data type does not match, length of service parameter too high

0607 0013h Data type does not match, length of service parameter too low

0609 0011h Sub-index does not exist

0609 0030h Value range of parameter exceeded (only for write access)

0609 0031h Value of parameter written too high

0609 0032h Value of parameter written too low

0800 0000h General error

0800 0020h Data cannot be transferred or stored to the application

0800 0021h Data cannot be transferred or stored to the application because of local control

0800 0022h Data cannot be transferred or stored to the application because of the present device state

3.2.4 Process Data Objects (PDO)

Process Data Objects are used for high priority, real-time data transfers between CANopen master and the drives. The
PDOs are unconfirmed services and are performed with no protocol overhead. Transmit PDOs are used to send data
from the drive, and receive PDOs are used to receive data. The Technosoft drives have 4 transmit PDOs and 4 receive
PDOs. The contents of the PDOs can be set according with the application needs through the dynamic PDO-mapping.
This operation can be done during the drive configuration phase using SDOs.

Two objects define a PDO: the communication object and the mapping object. The communication object defines the
COB-ID of the PDO, the transmission type and the event triggering the transmission. The mapping object contains the
descriptions of the objects mapped into the PDO, i.e. the index, sub-index and size of the mapped objects.

The following PDO transmission modes are distinguished:

• Synchronous transmission - the PDO is transmitted after the SYNC. In case it is cyclic the sampling is started with the
reception of every SYNC, every 2nd SYNC, every 3rd SYNC, and s.o. depending on the given value and the PDO is
transmitted afterwards.
• Event-driven transmission (asynchronous) - the PDO will be sent every time anything changes in its data field.
• RTR-only transmission - the PDO is not transmitted normally it shall be requested via RTR. In case it is synchronous
the device will start sampling with every SYNC and then will buffer the PDO when a RTR request is received. In case it
is event-driven the device will start sampling with the reception of the RTR and will transmit the PDO immediately.

Table 3.2 – Transmission type

Value Description

00h Reserved.

01h synchronous (cyclic every SYNC))

02h synchronous (cyclic every 2nd SYNC)

03h synchronous (cyclic every 3rd SYNC)

04h synchronous (cyclic every 4th SYNC)

… …

F0h synchronous (cyclic every 240th SYNC)

F1h Reserved.

… …

FBh Reserved.

FCh RTR-only (synchronous)

FDh RTR-only (event-driven)

FEh
Event-driven (asynchronous)

FFh

© Technosoft 2024 38 CANopen Programming

The inhibit time is the minimum interval for PDO transmission if the transmission type is set to FEh and FFh. This means
that even though the PDO should be sent faster, it will be sent at minimum inhibit time intervals. The value is defined as
multiple of 100 μs, the value 0 disabling the inhibit time.

The event timer is the maximum interval for PDO transmission if the transmission type is set to FEh and FFh. This means
that even if nothing changes in its data field, the PDO will be sent at event timer intervals. The value is defined as
multiple of 1 ms, the value 0 disabling the event timer.

3.3 Objects that define SDOs and PDOs

3.3.1 Object 1200h: Server SDO Parameter

The object contains the COB-IDs of the messages used for the SDO protocol. The COBID of the SDO packages
received by the drive, stored in sub-index 01, is computed as 600h + drive Node ID. The COB ID of the SDO packages
sent by the drive, stored in sub-index 02, is computed as 580h + drive Node ID.

Object description:

Index 1200h

Name Server SDO Parameter

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 01h

Description SDO receive COB-ID

Access RO

PDO mapping No

Value range UNSIGNED32

Default value 600h + Node-ID

Sub-index 02h

Description SDO transmit COB-ID

Access RO

PDO mapping No

Value range UNSIGNED32

Default value 580h + Node-ID

3.3.2 Object 1400h: Receive PDO1 Communication Parameters

The object contains the communication parameters of the receive PDO1. Sub-index 1h contains the COB ID of the PDO.
The transmission type (sub-index 2h) defines the reception character of the PDO.

Object description:

Index 1400h

Name RPDO1 Communication Parameter

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 2

Sub-index 01h

Description COB-ID RPDO1

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 200h + Node-ID

© Technosoft 2024 39 CANopen Programming

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

Table 3.3 – PDO COB-ID entry description

Bit Value Meaning

31
0 PDO exists / is valid / is enabled

1 PDO does not exist / is not valid / is disabled

30
0 RTR allowed on this PDO

1 No RTR allowed on this PDO

29
0 11 bit ID

1 29 bit ID

28…11
0 If bit 29=0

X If bit 29=1: Bit 11...28 of 29-bit PDO COB-ID

10...0 X Bit 0...10 of PDO COB-ID

It is not allowed to change bits 0-29 while the PDO exists (bit 31=0).

3.3.3 Object 1401h: Receive PDO2 Communication parameters

The object contains the communication parameters of the receive PDO2. Sub-index 1h contains the COB ID of the PDO.
The transmission type (sub-index 2h) defines the reception character of the PDO. The receive PDO2 COB-ID entry
description is identical with the one of the receive PDO1 (see Table 3.3.1).

Object description:

Index 1401h

Name RPDO2 Communication Parameter

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 2

Sub-index 01h

Description COB-ID RPDO2

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 300h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

3.3.4 Object 1402h: Receive PDO3 Communication parameters

The object contains the communication parameters of the receive PDO3. Sub-index 1h contains the COB ID of the PDO.
The transmission type (sub-index 2h) defines the reception character of the PDO. The receive PDO3 COB-ID entry
description is identical with the one of the receive PDO1 (see Table 3.3.1).

Object description:

Index 1402h

Name RPDO3 Communication Parameter

Object code RECORD

Data type SDO Parameter

© Technosoft 2024 40 CANopen Programming

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 2

Sub-index 01h

Description COB-ID RPDO3

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 400h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

3.3.5 Object 1403h: Receive PDO4 Communication parameters

The object contains the communication parameters of the receive PDO4. Sub-index 1h contains the COB ID of the PDO.
The transmission type (sub-index 2h) defines the reception character of the PDO. The receive PDO4 COB-ID entry
description is identical with the one of the receive PDO1 (see Table 3.3.1).

Object description:

Index 1403h

Name RPDO4 Communication Parameter

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 2

Sub-index 01h

Description COB-ID RPDO2

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 500h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

3.3.6 Object 1600h: Receive PDO1 Mapping Parameters

This object contains the mapping parameters of the receive PDO1. The sub-index 00h contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO. The sub-indices from 01h to the number of entries contain the
information about the mapped objects. These entries describe the PDO contents by their index, sub-index and length.
The length entry contains the length of the mapped object in bits and is used to verify the overall mapping length.

The structure of the entries from sub-index 01h to the number of entries is as follows:

© Technosoft 2024 41 CANopen Programming

 MSB LSB

Index (16 bits) Sub-index (8 bits) Object length (8 bits)

In order to change the PDO mapping, first the PDO has to be disabled - the object 160xh sub-index 00h has to be set to
0. Now the objects can be remapped. If a wrong mapping parameter is introduced (object does not exist, the object
cannot be mapped or wrong mapping length is detected) the SDO transfer will be aborted with an appropriate error
code (0602 0000h or 0604 0041h). After all objects are mapped, sub-index 00h has to be set to the valid number of
mapped objects thus enabling the PDO. It is possible to map up to eight objects, each with a size of one byte, resulting
in a total of 64 bits.
If data types (index 01h - 07h) are mapped, they serve as “dummy entries”. The corresponding data is not evaluated by
the drive. This feature can be used to transmit data to several drives using only one PDO, each drive using only a part
of the PDO. This feature is only valid for receive PDOs.

Object description:

Index 1600h

Name RPDO1 Mapping Parameters

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of mapped objects

Access RW

PDO mapping No

Value range 0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 1

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60400010h – Controlword

3.3.7 Object 1601h: Receive PDO2 Mapping Parameters

This object contains the mapping parameters of the receive PDO2. The sub-index 00h contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO. It is possible to map up to eight objects, each with a size of one byte,
resulting in a total of 64 bits.

Object description:

Index 1601h

Name RPDO2 Mapping Parameter

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of mapped objects

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 2

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60400010h – Controlword

Sub-index 02h

Description 2nd mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60600008h – modes of operation

© Technosoft 2024 42 CANopen Programming

3.3.8 Object 1602h: Receive PDO3 Mapping Parameters

This object contains the mapping parameters of the receive PDO3. The sub-index 00h contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO. It is possible to map up to eight objects, each with a size of one byte,
resulting in a total of 64 bits.

Object description:

Index 1602h

Name RPDO3 Mapping Parameter

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of mapped objects

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 2

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60400010h – Controlword

Sub-index 02h

Description 2nd mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 607A0020h – target position

3.3.9 Object 1603h: Receive PDO4 Mapping Parameters

This object contains the mapping parameters of the receive PDO4. The sub-index 00h contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO. It is possible to map up to eight objects, each with a size of one byte,
resulting in a total of 64 bits.

Object description:

Index 1603h

Name RPDO4 Mapping Parameters

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of mapped objects

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 2

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60400010h – Controlword

Sub-index 02h

Description 2nd mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60FF0020h – target velocity

© Technosoft 2024 43 CANopen Programming

3.3.10 Object 1800h: Transmit PDO1 Communication parameters

This object contains the communication parameters of the transmit PDO1. For detailed description see Object 1400h:
Receive PDO1 Communication Parameters, COB-ID entry description, described in Table 3.3.1). The inhibit time is
defined as multiples of 100 µs.

Object description:

Index 1800h

Name TPDO1 Communication Parameters

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 5

Sub-index 01h

Description COB-ID TPDO1

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 180h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

Sub-index 03h

Description Inhibit time

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 300 (30 ms)

Sub-index 04h

Description Reserved

Sub-index 05h

Description Event timer

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

3.3.11 Object 1801h: Transmit PDO2 Communication parameters

This object contains the communication parameters of the transmit PDO2. For detailed description see Object 1400h:
Receive PDO1 Communication Parameters - COB-ID entry description, described in Table 3.3.1. The inhibit time is
defined as multiples of 100 µs.

Object description:

Index 1801h

Name TPDO2 Communication Parameters

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 5

© Technosoft 2024 44 CANopen Programming

Sub-index 01h

Description COB-ID TPDO2

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 280h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

Sub-index 03h

Description Inhibit time

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 300 (30 ms)

Sub-index 04h

Description Reserved

Sub-index 05h

Description Event timer

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

3.3.12 Object 1802h: Transmit PDO3 Communication parameters

This object contains the communication parameters of the transmit PDO3. By default, this TxPDO is disabled by setting
Bit31 to 1b in Sub-index 01h. For detailed description see Object 1400h: Receive PDO1 Communication Parameters -
COB-ID entry description, described in Table 3.3.1. The inhibit time is defined as multiples of 100 µs.
Object description:

Index 1802h

Name TPDO3 Communication Parameters

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 5

Sub-index 01h

Description COB-ID TPDO3

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 80000380h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

Sub-index 03h

Description Inhibit time

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 300 (30 ms)

© Technosoft 2024 45 CANopen Programming

Sub-index 04h

Description Reserved

Sub-index 05h

Description Event timer

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

3.3.13 Object 1803h: Transmit PDO4 Communication parameters

This object contains the communication parameters of the transmit PDO4. By default, this TxPDO is disabled by setting
Bit31 to 1b in Sub-index 01h. For detailed description Object 1400h: Receive PDO1 Communication Parameters - COB-
ID entry description, described in Table 3.3.1. The inhibit time is defined as multiples of 100 µs.
Object description:

Index 1803h

Name TPDO4 Communication Parameter

Object code RECORD

Data type SDO Parameter

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 5

Sub-index 01h

Description COB-ID TPDO4

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 80000480h + Node-ID

Sub-index 02h

Description Transmission type

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 255

Sub-index 03h

Description Inhibit time

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 300 (30 ms)

Sub-index 04h

Description Reserved

Sub-index 05h

Description Event timer

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

3.3.14 Object 1A00h: Transmit PDO1 Mapping Parameters

This object contains the mapping parameters of the transmit PDO1. For detailed description see Object 1600h: Receive
PDO1 Mapping Parameters. It is possible to map up to eight objects, each with a size of one byte, resulting in a total of
64 bits.
Object description:

Index 1A00h

Name TPDO1 Mapping Parameters

Object code RECORD

Data type PDO Mapping

Entry description:

© Technosoft 2024 46 CANopen Programming

Sub-index 00h

Description Number of mapped objects

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 1

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60410010h – Statusword

3.3.15 Object 1A01h: Transmit PDO2 Mapping Parameters

This object contains the mapping parameters of the transmit PDO2. For detailed description see object Object 1600h:
Receive PDO1 Mapping Parameters. It is possible to map up to eight objects, each with a size of one byte, resulting in
a total of 64 bits.
Object description:

Index 1A01h

Name TPDO2 Mapping Parameter

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of mapped objects

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 2

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60410010h – Statusword

Sub-index 02h

Description 2nd mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value
60610008h – modes of operation
display

3.3.16 Object 1A02h: Transmit PDO3 Mapping Parameters

This object contains the mapping parameters of the transmit PDO3. For detailed description see Object 1600h: Receive
PDO1 Mapping Parameters. By default, this PDO is disabled with Object 1802h: Transmit PDO3 Communication
parameters Sub-index 01 by setting Bit31 to 1. It is possible to map up to eight objects, each with a size of one byte,
resulting in a total of 64 bits.
Object description:

Index 1A02h

Name TPDO3 Mapping Parameter

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of entries

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 2

© Technosoft 2024 47 CANopen Programming

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60410010h – Statusword

Sub-index 02h

Description 2nd mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60640020h – position actual value

3.3.17 Object 1A03h: Transmit PDO4 Mapping Parameters

This object contains the mapping parameters of the transmit PDO4. For detailed description see Object 1600h: Receive
PDO1 Mapping Parameters. By default, this PDO is disabled with Object 1803h: Transmit PDO4 Communication
parameters Sub-index 01 by setting Bit31 to 1. It is possible to map up to eight objects, each with a size of one byte,
resulting in a total of 64 bits.

Object description:

Index 1A03h

Name TPDO4 Mapping Parameter

Object code RECORD

Data type PDO Mapping

Entry description:

Sub-index 00h

Description Number of entries

Access RW

PDO mapping No

Value range
0: Mapping disabled
1 – 64: Sub-index 1 to x is valid

Default value 2

Sub-index 01h

Description 1st mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 60410010h – Statusword

Sub-index 02h

Description 2nd mapped object

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 606C0020h – velocity actual value

3.3.18 Object 207Dh: Dummy

This object may be used to fill a RPDO up to a length matching the CANopen master requirements.

Object description:

Index 207Dh

Name Dummy

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Possible

Value range 0 … 255

Default value 0

© Technosoft 2024 48 CANopen Programming

3.4 Dynamic mapping of the PDOs

Follow the next steps to change the default mapping of a PDO:

Disable (destroy) the PDO by setting bit valid (Bit31) to 1b of sub-index 01h of the according PDO communication
parameter object (index 1400h-1403h for RxPDOs and 1800h-1803h for TxPDOs). The PDO COB-ID entry description is
described in Table 3.3.1.

Disable mapping. In the PDO’s mapping object (index 1600h-1603h; for RxPDOs and 1A00h-1A03h for TxPDOs) set
the first sub-index 00h (the number of mapped objects) to 00h.

Map the new objects. Write in the PDOs mapping object (index 1600h-1603h; for RxPDOs and 1A00h-1A03h for
TxPDOs) sub-indexes (1-8) the description of the objects that will be mapped.

Maximum PDO size. You can map up to 8 objects, each 1 byte in size, for a total of 64 bits.

Enable mapping. In sub-index 0 of the PDOs associated mapping object (index 1600h-1603h; for RxPDOs and 1A00h-
1A03h for TxPDOs) write the number of mapped objects.

Enable (create) the PDO by setting bit valid (Bit31) to 0b of sub-index 01h of the according PDO communication
parameter object (index 1400h-1403hh for RxPDOs and 1800h-1803h for TxPDOs).

3.5 RxPDOs mapping example

Map the Receive PDO3 of axis number 06 with Controlword (index 6040h) and Modes of Operation (index 6060h).
1. Disable the RxPDO. Set Bit31 to 1b of sub-index 01h in object 1402h, this will disable the RxPDO. The PDO

COB-ID entry description is described in Table 3.3.1.

Bit31
valid

RxPDO3
COB-ID

Axis Node
ID

Resulting
data

1b + 400h + 06h = 80000406h

Send the following message (SDO access to object 1402h sub-index 1, 32-bit value 80000406h):

COB-ID Data

606 23 02 14 01 06 04 00 80

2. Change the communication parameters. For example purposes the communication parameters default
values are acceptable.

3. Disable mapping PDO. Write zero in object 1602h sub-index 0, this will disable the PDO’s mapping.
Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 0):

COB-ID Data

606 2F 02 16 00 00 00 00 00

4. Map the new objects.
a. Write in object 1602h sub-index 1 the description of the Controlword:

Index Sub-index Length
Resulting

data

6040h 00h 10h 60400010h

Send the following message (SDO access to object 1602h sub-index 1, 32-bit value 60400010h):

COB-ID Data

606 23 02 16 01 10 00 40 60

b. Write in object 1602h sub-index 2 the description of the Modes of Operation:

Index Sub-index Length
Resulting

data

6060h 00h 08h 60600008h

Send the following message (SDO access to object 1602h sub-index 2, 32-bit value 60600008h):

COB-ID Data

606 23 02 16 02 08 00 60 60

5. Enable the RxPDO mapped objects. Set the object 1602h sub-index 0 with the value 2 to enable both mapped
objects.

Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 2):

COB-ID Data

606 2F 02 16 00 02 00 00 00

6. Enable the RxPDO. Set Bit31 to 0b of sub-index 01h in object 1402h, this will enable the RxPDO. Set in object
1402h sub-index 1 Bit31 to 0. The PDO COB-ID entry description is described in Table 3.3.1.

Bit31
valid

RxPDO3
COB-ID

Axis Node
ID

Resulting
data

0b + 400h + 06h = 00000406h

Send the following message (SDO access to object 1402h sub-index 1, 32-bit value 0x00000406):

COB-ID Data

606 23 02 14 01 06 04 00 00

© Technosoft 2024 49 CANopen Programming

3.6 TxPDOs mapping example

Map the Transmit PDO4 of axis number 06 with Position actual value (index 6064h) and Digital inputs (index 60FDh).
Disable the TxPDO. Set Bit31 to 1b of sub-index 01h in object 1803h, this will disable the TxPDO. The PDO COB-ID
entry description is described in Table 3.3.1.

Bit31
valid

TxPDO4
COB-ID

Axis Node
ID

Resulting
data

1b + 480h + 06h = 80000486h

Send the following message (SDO access to object 1803h sub-index 1, 32-bit value 80000486h):

COB-ID Data

606 23 03 18 03 86 04 00 80

Set the transmission type. Write 255 in object 1803h sub-index 2. This will set the transmission type as asynchronous,
meaning that the PDO will be sent every time anything changes in its data field.
Send the following message (SDO access to object 1803h sub-index 2, 8-bit value FFh):

COB-ID Data

606 2F 03 18 02 FF 00 00 00

Set inhibit time. Write 1000 in object 1803h sub-index 3. This will set an inhibit time of 100ms. This means that even
though the PDO should be sent faster, it will be sent at minimum 100ms intervals.
Send the following message (SDO access to object 1803h sub-index 3, 16-bit value 03E8h):

COB-ID Data

606 2B 03 18 03 E8 03 00 00

Set event timer. Write 1000 in object 1803h sub-index 5. This will set an event timer of 1000 ms. This means that the
PDO will be sent at 1000ms intervals, even if nothing changes in its data field.
Send the following message (SDO access to object 1803h sub-index 5, 16-bit value 03E8h):

COB-ID Data

606 2B 03 18 05 E8 03 00 00

Disable the PDO mapping. Write zero in object 1A03h sub-index 0, this will disable the PDO’s mapping.
Send the following message (SDO access to object 1A03h sub-index 0, 8-bit value 0):

COB-ID Data

606 2F 03 1A 00 00 00 00 00

Map the new objects.
a. Write in object 1A03h sub-index 1 the description of the Position actual value:

Index Sub-index Length
Resulting

data

6064h 00h 20h 60640020h

Send the following message (SDO access to object 1A03h sub-index 1, 32-bit value 60640020h):

COB-ID Data

606 23 03 1A 01 20 00 64 60

b. Write in object 1A03h sub-index 2 the description of the Digital inputs:

Index Sub-index Length
Resulting

data

60FDh 00h 20h 60FD0020h

Send the following message (SDO access to object 1A03h sub-index 2, 32-bit value 60FD0020h):

COB-ID Data

606 23 03 1A 02 20 00 FD 60

Enable the TxPDO mapped objects. Set the object 1A03h sub-index 0 with the value 2 to enable both mapped objects.
Send the following message (SDO access to object 1A03h sub-index 0, 8-bit value 2):

COB-ID Data

606 2F 03 1A 00 02 00 00 00

Enable the TxPDO 4. Set Bit31 to 0b of sub-index 01h in object 1803h, this will enable the TxPDO 4. Set in object 1803h
sub-index 1 Bit31 to 0. The PDO COB-ID entry description is described in Table 3.3.1.

Bit31
valid

TxPDO4
COB-ID

Axis Node
ID

Resulting
data

0b + 480h + 06h = 00000486h

Send the following message (SDO access to object 1803h sub-index 1, 32-bit value 0x00000486):

COB-ID Data

606 23 03 18 01 86 04 00 00

Start remote node 6. Send a NMT message to start the node id 6. This message is to enable the use of the PDOs.
Send the following message:

COB-ID Data

0 01 06

After the last message, the drive will start emitting at 1s intervals data with COB-ID 0x486 showing the motor actual
position and the Digital input status. If the encoder is rotated, the PDO will be sent every time the position changes, but
not faster than 100ms.

© Technosoft 2024 50 CANopen Programming

4 Network Management

4.1 Overview

The Network Management (NMT) services initialize, start, monitor, reset or stop the CANopen nodes. The NMT requires
a node in the network (a PC or a PLC) to be designed as a network manager while the Technosoft intelligent drives are
the NMT slaves. The NMT services are fulfilled by the NMT objects described later in this chapter.

4.1.1 Network Management (NMT) State Machine

Figure 4.1.1 shows the NMT state diagram of a CANopen device. After finishing the initialization, the drive enters the
NMT state Pre-operational. During this state, both the communication parameters and drive parameters can be changed
using SDO messages. In this state, the PDO messages are defined. Once entered in the operational mode, the drive is
typically controlled via PDO messages.

Figure 4.1.1. NMT state diagram

Table 4.1 – NMT state transitions

(1) At Power on the NMT state initialization is entered autonomously

(2) NMT state initialization finished - enter NMT state Pre-operational automatically

(3) NMT service start remote node indication or by local control

(4),(7) NMT service enter pre-operational indication

(5),(8) NMT service stop remote node indication

(6) NMT service start remote node indication

(9),(10),(11) NMT service reset node indication

(12),(13),(14) NMT service reset communication indication

4.1.2 Device control

Through Module Control Services, the NMT master controls the state of the NMT slaves. The following states are
implemented on the Technosoft drives:

State Description

Pre-operational
The drive enters the pre-operational state after finishing its initialization. In this
state the communication between the CANopen master and the drive can be done
only via SDOs. PDOs are not allowed.

Operational
This is the normal operating state of the drives. The communication through SDO
and PDO is allowed

Stopped
In this state, the drive stops the communication except the network management
messages.

The network manager can change the state of the drives using one of the following services:

Service Description

Start
Remote Node

The NMT master sets the state of the selected NMT slave to operational

Stop
Remote Node

The NMT master sets the state of the selected NMT slave to stopped

Enter
Pre-Operational

The NMT master sets the state of the selected NMT slave to pre-operational

Reset Node
The NMT master sets the state of the selected NMT slave to the “reset application”
sub-state. In this state, the drives perform a software reset and enter the pre-
operational state.

© Technosoft 2024 51 CANopen Programming

Reset
Communication

The NMT master sets the state of the selected NMT slave to the “reset
communication” sub-state. In this state the drives resets their communication and
enter the pre-operational state.

All the services are unconfirmed.

4.1.2.1 Enter Pre-Operational

Used to change NMT state of one or all NMT slaves to “Pre-Operational”.
cs 0x80 Command specifier for NMT command Enter Pre-Operational

Node
ID

1…127 NMT slave with corresponding Node ID will enter in NMT state Pre-Operational

0 All NMT Slaves will enter NMT state Pre-Operational

Figure 4.1.2. NMT Enter Pre-Operational

Example for Axis 6. Enter Pre-Operational.

COB-ID Data

0 80 06

4.1.2.2 Reset communication

Used to reset communication of one or all NMT slaves.

cs 0x82 Command specifier for NMT command Reset Communication

Node
ID

1…127 NMT slave with corresponding Node ID will reset communication

0 All NMT Slaves will reset communication

Figure 4.1.3. NMT Reset Communication

Example for Axis 6. Reset communication.

COB-ID Data

0 82 06

4.1.2.3 Reset Node

Used to reset one or all NMT slaves.

cs 0x81 Command specifier for NMT command Reset Node

Node
ID

1…127 NMT slave with corresponding Node ID will reset

0 All NMT Slaves will reset

Figure 4.1.4. NMT Reset Node

Example for Axis 6. Reset node.

COB-ID Data

0 81 06

4.1.2.4 Start Remote Node

Used to change NMT state of one or all NMT slaves to “Operational”. PDO communication will be allowed.
cs 0x01 Command specifier for NMT command Start Remote Node

Node
ID

1…127 NMT slave with corresponding Node ID will enter “Operational” state

0 All NMT Slaves will enter “Operational” state

Figure 4.1.5. NMT Start Remote Node

Example for Axis 6. Start Remote Node.

COB-ID Data

0 01 06

© Technosoft 2024 52 CANopen Programming

4.1.2.5 Stop Remote Node

Used to change NMT state of one or all NMT slaves to “Stopped”.
cs 0x02 Command specifier for NMT command Stop Remote Node

Node
ID

1…127 NMT slave with corresponding Node ID will enter “Stopped” state

0 All NMT Slaves will enter “Stopped” state

Figure 4.1.6. NMT Stop Remote Node

Example for Axis 6. Stop Remote Node.

COB-ID Data

0 02 06

4.1.3 Device monitoring

In addition to controlling the drive states, the NMT provides services for monitoring the nodes in the network. The
monitoring services are achieved mainly through the periodical transmission of messages by the network manager, with
answers from the slaves, or messages sent by the slaves without master intervention. Monitoring services can use the
Node Guarding protocol (including Life Guarding) or the Heartbeat protocol.

4.1.3.1 Node guarding protocol

The master polls each NMT slave at regular time intervals. This time interval is called the guard time and may be different
for each NMT slave. The slaves answer with a node-guarding message containing their state. This allows both the
master and the slave to identify a network error if either the remote request or the guarding messages stop.

The node life time is computed as the product between the guard time (Object 100Ch: Guard Time) and the life time
factor (Object 100Dh: Life Time Factor). If the drive is not accessed within the life time then a Life Time event occurs
and an emergency telegram is sent.

4.1.3.2 Heartbeat protocol

The Heartbeat protocol defines an error control service without the need of remote frames. It implies independent and
cyclical transmission of a telegram by the drive (the Heartbeat producer) indicating the drives current state. The time
interval between two heartbeat messages is specified through producer heartbeat time (Object 1017h: Producer
Heartbeat Time). The master (Heartbeat consumer) guards the reception of the heartbeat messages within the
Heartbeat Consumer Time. If the value of this object is 0, the heartbeat transmission is disabled. If the master does not
receive the heartbeat message this indicates a problem with the drive or with its network connection.

4.1.3.3 Boot-up protocol

This protocol is used by the drive to signal to the network master that it has entered the state pre-operational. When the
drive is powered on for the time or is reset, it will send a boot-up message with the COB-ID (0x700+ Node Id) and Data
00.

4.1.3.4 Synchronization between devices

The synchronization message (SYNC with COB ID 0x80 and no Data) allows synchronizing the devices in the network
and triggering the synchronous transmission of PDOs. The SYNC producer broadcasts the synchronization message
periodically. This service is unconfirmed. Technosoft intelligent drives can act both as SYNC consumer and producer.

There are two ways to synchronize the drive in a network:

1. Send only the sync message with the COB ID 0x80 and Data null at very precise intervals. This method is the most
commonly used and its accuracy is based on how precise the master sends the SYNCS and the CAN bus load

2. For time critical applications, which require more accurate synchronization, the Technosoft drives can use the optional
high-resolution synchronization protocol, which employs a special form of time stamp message. The High Resolution
Time Stamp can be set with the COB ID 0x100 and 4 bytes of data that represent a time stamp with a resolution of 1µs.
When the master sends a time stamp with the COB ID 0x100 it has the same effect as writing the same value to all the
slaves in the network in object 1013 h. With this second method, the master sends the sync message (0x80) followed
immediately by the time stamp message with the id 0x100.

When one of the Technosoft drives is set as synchronization master, the High resolution time stamp is by default sent
using the COB ID defined in COB-ID High Resolution Time Stamp object (Object 2004h: COB-ID of the High-resolution
time stamp).

© Technosoft 2024 53 CANopen Programming

4.1.4 Emergency messages

A drive sends an emergency message (EMCY) when a drive internal error occurs. An emergency message is
transmitted only once per ‘error event’. As long as no new errors occur, the drive will not transmit further emergency
messages.

The emergency error codes supported by the Technosoft drives are listed in Table 4.1.2. Details regarding the
conditions that may generate emergency messages are presented at Object 2000h: Motion Error Register.

Table 4.2 – Emergency Error Codes

Error code (hex) Description

0000 Error Reset or No Error

1000
Generic Error; sent when a communication error occurs on CAN Object 2000h:
Motion Error Register bit0=1; usually followed by EMCY code 0x7500

2310 Continuous over-current

2340 Short-circuit

3210 DC-link over-voltage

3220 DC-link under-voltage

4280 Over temperature motor

4310 Over temperature drive

5441 Drive disabled due to enable or STO input

5442 Negative limit switch active

5443 Positive limit switch active

6100 Invalid setup data

7300
Sensor error; this emergency message also contains other data; see its description
at the end of this table

7500
Communication error; this emergency message also contains other data; see its
description at the end of this table

8110 CAN overrun (message lost)

8130 Life guard error or heartbeat error

8331 I2t protection triggered

8580 Position wraparound

8611 Control error / Following error

9000 Command error

FF01

Generic interpolated position mode error (PVT / PT error); this emergency message
also contains other data; see its description at the end of this table

FF02 Change set acknowledge bit wrong value

FF03 Specified homing method not available

FF04 A wrong mode is set in Object 6060h: Modes of Operation

FF05 Specified digital I/O line not available

FF06 Positive software position limit triggered

FF07 Negative software position limit triggered

FF08 Enable circuit hardware error

FF09 Trying to write data to EEPROM while its locked

4.1.4.1 Emergency message structures

The Emergency message contains 8 data bytes having the following contents:
Most EMCY messages:

0 1 2 3 7

Emergency Error Code
Error Register
(Object 1001h)

Manufacturer specific error field

0x7500 Communication error:

0 1 2 3 4 5 7

Emergency Error Code
Error Register
(Object 1001h)

Communication Error Register
(Object 2003h)

Manufacturer specific error
field

0x7300 Sensor error:

0 1 2 3 4 5 7

Emergency Error Code
Error Register
(Object 1001h)

Detail Error Register 2
(Object 2009h)

Manufacturer specific error
field

0xFF01 Generic interpolated position mode error (PVT / PT error):

0 1 2 3 4 5 7

Emergency Error
Code (0xFF01)

Error Register
(Object 1001h)

Interpolated position status
(Object 2072h)

Manufacturer specific error
field

To disable the sending of PVT emergency message with ID 0xFF01, the setup variable PVTSENDOFF must be set to
1.

© Technosoft 2024 54 CANopen Programming

4.2 Network management objects

The section describes the objects related to network management

4.2.1 Object 1001h: Error Register

This object is an error register for the device. The device can map internal errors in this byte. This entry is mandatory
for all devices. It is a part of an Emergency object.

Object description:

Index 1001h

Name Error register

Object code VAR

Data type UNSIGNED8

Entry description:

Access RO

PDO mapping Yes3F

1

Value range UNSIGNED8

Default value No

Table 4.3 – Bit description of object 1001h

Bit Description

0 Generic error

1 Current

2 Voltage

3 Temperature

4 Communication error

5 Device profile specific

6 Reserved (always 0)

7 Manufacturer specific.

Valid bits while an error occurs – bit 0 and bit 4. The other bits will remain 0.

4.2.2 Object 1003h: Pre-defined error field

This object provides the errors that occurred on the drive and were signaled via the emergency object. If no error was
signaled, sub-index 00h reports 0 entries. The object can report up to 5 emergency messages recently transmitted. The
last reported error will always be set in sub-index 1.

Object description:

Index 1003h

Name Pre-defined error field

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 00h

Description Number of errors in history

Access RO

PDO mapping No

Value range 1..5

Default value 0

Sub-index 01h

Description Standard error field

Access RO

PDO mapping No

Value range UNSIGNED32

Default value -

Sub-index 02h to 05h

Description Standard error field

Access RO

PDO mapping No

Value range UNSIGNED32

Default value -

1 Object 1001h is PDO mappable starting with F514K firmware version. Not mappable for FA01x firmware versions.

© Technosoft 2024 55 CANopen Programming

4.2.3 Object 1005h: COB-ID of the SYNC Message

This object defines the COB-ID of the Synchronization Object (SYNC) and whether the drive generates the SYNC or
not.

Object description:

Index 1005h

Name COB-ID SYNC Message

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 80h

The structure of the parameter is the following:

Table 4.4 – Bit description of object 1005h

Bit Value Description

31 X Reserved

30
0 Drive does not generate synchronization messages

1 Drive is the synchronization master (SYNC producer)

29
0 Use 11 bit identifier

1 Use 29 bit identifier

28…11 X Bit 11...28 of 29-bit SYNC COB-ID

10...0 X Bit 0...10 of SYNC COB-ID

The first transmission of SYNC object starts within 1 sync cycle after setting bit 30 to 1. It is not allowed to change bit
0...29, while the object exists (bit 30 = 1).

4.2.4 Object 1006h: Communication Cycle Period

The object defines the time interval between SYNC messages expressed in μs. A drive sends SYNC messages if it is
configured to send SYNC messages through Object 1005h: COB-ID of the SYNC Message and the Object 1006h:
Communication Cycle Period is set with a non-zero value.

Object description:

Index 1006h

Name Communication cycle period

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 0

4.2.5 Object 1010h: Store parameters

This object controls the saving of certain object parameters in the non-volatile memory. By writing 65766173h (“save” in
/ISO8859/ characters) into sub--index 01h, the drive stores the parameters of the following objects:

• 1400h-1403h;

• 1600h-1603h;

• 1800h-1803h;

• 1A00h-1A03h;

• 1005h; 1006h; 100Ch; 100Dh; 1014h; 1017h;

• 207Bh; 207Ch;

• 6007h; 605Ah; 605Bh; 605Ch; 605Dh; 605Eh; 6060h; 6065h; 6066h; 6067h; 6068h; 607Ah; 607Ch; 607Dh; 607Eh;
6081h; 6083h; 6085h; 6098h; 6099h; 609Ah; 60FFh.

By reading sub-index 01h of object 1010h, the reply shall be 0x00000001, meaning the device does not save parameters
autonomously and it saves them on command.

On reception of the correct signature in 01h sub-index, the drive will confirm the SDO transmission (SDO download
response). Because storing of drive parameters lasts more than an SDO write command, always wait for the SDO
confirmation message.

After save command is performed, the drive, shall always load the parameters of the previously mentioned objects at
startup. To restore the default standard values see Object 1011h: Restore parameters.

© Technosoft 2024 56 CANopen Programming

Object description:

Index 1010h

Name Store parameters

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 00h

Description highest sub-index supported

Access RO

PDO mapping No

Value range 1

Default value 1

Sub-index 01h

Description Save parameters

Access RW

PDO mapping No

Value range UNSIGNED32

Default value -

To save the parameters of the objects previously mentioned, send the following command:

 (SDO access to object 1010h sub-index 1, 32-bit value 65766173h)

COB-ID Data

606 23 10 10 01 73 61 76 65

4.2.6 Object 1011h: Restore parameters

This object restores certain object parameters to their default values. By writing 64616F6Ch (“load” in /ISO8859/
characters) into sub-index 01h, the drive restores to their default values the parameters of the following objects :

• 1400h-1403h;

• 1600h-1603h;

• 1800h-1803h;

• 1A00h-1A03h;

• 1005h; 1006h; 100Ch; 100Dh; 1014h; 1017h;

• 6065h; 6066h; 6067h; 6068h; 6060h; 607Ch; 6081h; 6083h; 6098h; 6099h; 60FFh

By reading sub-index 01h of object 1011h, the reply shall be 0x00000001, meaning the device can restore CANopen
parameters to their default value.

The default values will be set valid after the drive is reset.

Object description:

Index 1011h

Name Restore default parameters

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 00h

Description highest sub-index supported

Access RO

PDO mapping No

Value range 1

Default value 1

Sub-index 01h

Description Restore all default parameters

Access RW

PDO mapping No

Value range UNSIGNED32

Default value -

To restore the object parameters to their default values, send the following command:

 (SDO access to object 1011h sub-index 1, 32-bit value 64616F6C h)

COB-ID Data

606 23 11 10 01 6C 6F 61 64

© Technosoft 2024 57 CANopen Programming

4.2.7 Object 100Ch: Guard Time

The Guard Time object multiplied with Lifetime Factor (Object 100Dh: Life Time Factor) gives the Lifetime of the drive
for the Life Guarding Protocol. The Guard Time is expressed in ms. When the Life Guarding Protocol is not used the
object must be set to 0. When the Node Guarding is active, i.e. the network manager sends the Node Guarding
messages, the Life Guarding Protocol checks if the master has stopped sending messages or not. The decision of Node
Guarding failure is taken if no message from the master is received within the period defined as Lifetime.

Object description:

Index 100Ch

Name Guard time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

4.2.8 Object 100Dh: Life Time Factor

The lifetime factor multiplied with the guard time gives the lifetime for the Life Guarding Protocol. Must be 0 if not used.

Object description:

Index 100Dh

Name Life time factor

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 0

4.2.9 Object 1013h: High Resolution Time Stamp

This object can receive a time stamp with a resolution of 1μs (1 unit = 1μs). It can be used in order to synchronize the
drives in the CANopen network.

When setting up the synchronization mechanism, the master can map the object 1013h on a receive PDO whose COB-
ID should be identical on all the slave drives that need to be synchronized.

This object has to be written immediately after the SYNC message (the one that has the COB-ID 0x80). Upon the time
reception in this object, the drive will compensate for the difference between the received value and its internal clock
value.

The object also provides the drives internal clock value with a resolution of 1μs when read. It can be mapped to a TxPDO
to transmit a precise time over the network.

Remark 1: the drive internal clock will not be read anymore if a value is written into object 1013h. When object 1013h is
read, it will give either the internal clock or the last value written in it.

Remark 2: If a 4 byte (32bit) High Resolution Time Stamp is sent with the COB ID 0x100 right after the sync message
(with ID 0x80), all the drives in the network will receive the time data as if it was received into object 1013h.

Example: ID 0x100 Data 00 00 E8 03 – absolute time is 1000 (0x03E8) μs = 1ms.
Object description:

Index 1013h

Name High resolution time stamp

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0

© Technosoft 2024 58 CANopen Programming

4.2.10 Object 2004h: COB-ID of the High-resolution time stamp

This object defines the COB-ID used by the high-resolution time stamp message sent by the synchronization master
(when the drive is configured as a SYNC producer) in order to achieve synchronization on the network.

When the drive is the SYNC producer, this object defines if the high resolution time stamp is sent or not.

Object description:

Index 2004h

Name COB-ID High resolution time stamp

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 100h

The structure of the parameter is the following:

Bit Value Meaning

31
0 High resolution time stamp exists / is valid

1 High resolution time stamp does not exist / is not valid

30 0 Reserved (always 0)

29
0 11 bit ID

1 29 bit ID

28…11 X Bit 11...28 of 29-bit High resolution time stamp COB-ID

10...0 X Bit 0...10 of High resolution time stamp COB-ID

It is not allowed to change bits 0-29 while the object exists (bit 31=0).

This object will be used when a Technosoft drive is required to be the master for the synchronization messages. In this
case, the CANopen master does not need to map the Object 1013h: High Resolution Time Stamp into a receive PDO.

4.2.11 Configure the drive as a SYNC master Example

The procedure to activate the synchronization is the following:

▪ Set the SYNC interval. Write the desired SYNC interval into the object 1006h (Communication Cycle Period).
For example – 20 ms.

Send the following message (SDO access to object 1006h sub-index 0, 32-bit value 0x4E20 = 20000 μs = 20 ms):
COB-ID Data

606 23 06 10 00 20 4E 00 00

▪ Activate the SYNC producer. Set bit 30 in object 1005h (COB-ID of SYNC Message).

Send the following message (SDO access to object 1005h sub-index 0, 32-bit value 40000080h):

COB-ID Data

606 23 05 10 00 80 00 00 40

The drive will start sending sync messages with COB ID 0x80 Data null. It will also send time stamp messages with
COB ID 0x100 Data 0x12 0x34 0x56 0x78 0x00 0x00 where 0x000078563412 is the time stamp data expressed in μs.
Also, if in object 2004h the time stamp is disabled, the sync producer will emit only sync messages with COB ID 0x80.

4.2.12 Object 1014h: COB-ID Emergency Object

Index 1014h defines the COB-ID of the Emergency Object (EMCY).

Object description:

Index 1014h

Name COB-ID Emergency message

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 80h + Node-ID

© Technosoft 2024 59 CANopen Programming

Table 4.5 – Structure of the EMCY Identifier

MSB LSB

31 30 29 28 - 11 10 - 0

0/1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-bit Identifier

0/1 0 1 29 –bit Identifier

Table 4.6 – Description of the EMCY COD-ID entry

Bit Value Description

31 (MSB)
0 EMCY exists / is valid

1 EMCY does not exist / is not valid

30 0 Reserved

29
0 Use 11 bit identifier

1 Use 29 bit identifier (not supported)

28…11 0 Reserved

10...0 (LSB) X Bit 0...10 of COB-ID

It is not allowed to change Bits 0-29, while the object exists (Bit 31=0).

By setting Bits 0 to 10 to 0, the EMCY messages will be disabled.

4.2.13 Object 1017h: Producer Heartbeat Time

This object defines the cycle time of the heartbeat (if not equal to zero). If the heartbeat is not used, this object must
have the default value 0. The time has to be a multiple of 1 ms.

Object description:

Index 1017h

Name Producer Heartbeat Time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

4.2.14 Object 2089h: Synchronization test config

This object enables the visualization of SYNC0 and Control Loop signals over the drive digital outputs.

Object description:

Index 2089h

Name Synchronization test config

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range 0-7

Default value No

Table 4.2.7 –Bit Assignment in Synchronization test config

Bit Value Description

3-15 - Reserved

2 1 Trigger Control Loop (slow loop) on Ready/OUT3

1 1 View SYNC0 on Error/OUT2

Remarks:

 Before activating this feature, disconnect any other device connected to the outputs;

 For some drives, Ready and Error outputs are also connected to the green and red LEDs. The LEDs will flicker when
this feature is activated. This case shall not be treated as an error condition!

© Technosoft 2024 60 CANopen Programming

5 Drive control and status

5.1 CiA402 State machine and command coding

The state machine from Drives and motion control device profile (CiA 402) describes the drive status and the
possible control sequences of the drive. The drive has to pass through the described states in order to control the motor.
The drive states can be changed by the object 6040h (Controlword) and/or by internal events. The drive current state
is reflected in the object 6041h (Statusword). Figure 5.1.1 describes the state machine of the drive along with
Controlword and Statusword values for each transition. Table 5.1.1 describes each transition present in the state
machine.

Figure 5.1.1. Drive’s status machine. States and transitions

Table 5.1 – Drive State Transitions

Transition Event Action

0
Automatic transition after power-
on or reset application

Hardware Initialization

1 Automatic transition.
Initialization completed successfully.
Communication is active

2

Bits 1 and 2, are set in
Controlword (Shutdown
command).
Motor voltage may be present.

None

3
Bits 0,1 and 2 are set in
Controlword
(Switch On command)

Motor supply voltage must be present (6041h bit 4=1). The undervoltage

protection is active. The motor will not be powered and have no torque.

4
Bits 0,1,2 and 3 are set in
Controlword
(Enable Operation command)

Motion function and power stage are enabled, assuming the enable or STO
input is also enabled. Depending on the mode of operation that is set, the
motor will apply torque and keep its current position or velocity to 0. Depending
on the motor start mode, this transition may take more than a few ms to finish.
Example: When using the start mode “Move till aligned with phase A” which is
the default method, the first executed Enable operation transition takes 2
seconds.

© Technosoft 2024 61 CANopen Programming

5
Bit 3 is cancelled in Controlword
(Disable Operation command)

Motion function is inhibited. The drive will execute the instructions from Object
605Ch: Disable operation option code and finally transition into Switched On
state. The motor has no torque.

6
Bit 0 is cancelled in Controlword
(Shutdown command)

Motor supply may be disabled. Motor has no torque.

7
Bit 1 or 2 is cancelled in
Controlword (Quick Stop or
Disable Voltage command)

None

8
Bit 0 is cancelled in Controlword
(Shutdown command)

The drive will execute the instructions from Object 605Bh: Shutdown option
code and finally transition into Ready to switch on state. The motor has no
torque.

9
Bit 1 is cancelled in Controlword
(Disable Voltage command)

The drive will execute the instructions from Object 605Ch: Disable operation
option code and finally transition into Switch on disabled state. The motor has
no torque.

10
Bit 1 or 2 is cancelled in
Controlword (Quick Stop or
Disable Voltage command)

Motor supply may be disabled. Drive has no torque.

11
Bit 2 is cancelled in Controlword
(Quick Stop command)

The drive will execute the instructions from Object 605Ah: Quick stop option
code.

12
Quick Stop is completed or bit 1 is
cancelled in Controlword
(Disable Voltage command)

Output stage is disabled. Motor has no torque.

13 Fault signal
Execute specific fault treatment routine from Object 605Eh: Fault reaction
option code

14 The fault treatment is complete The drive function is disabled

15
Bit 7 is set in Controlword
(Reset Fault command)

Some of the bits from Object 2000h: Motion Error Register are reset. If all the
error conditions are reset, the drive returns to Switch On Disabled status. After
leaving the state Fault bit 7, Fault Reset of the Controlword has to be cleared
by the host.

16

Bit 2 is set in Controlword (Enable
Operation command). This
transition is possible if Quick-Stop-
Option-Code is 5, 6, 7 or 8

Drive exits from Quick Stop state. Drive function is enabled.

Table 5.2 – Drive States

State Description

Not Ready to
switch on

The drive performs basic initializations after power-on.
The drive function is disabled
The transition to this state is automatic.

Switch On
Disabled

The drive basic initializations are done and the green led must turn-on if no error is detected. The drive is not
Ready to switch on; any drive parameters can be modified, including a complete update of the whole EEPROM
data (setup table, TML program, cam files, etc.) The motor supply can be switched on, but the motion functions
cannot be carried out yet.
The transition to this state is automatic.

Ready to switch
on

The motor supply voltage may be switched on, most of the drive parameter settings can still be modified, and
motion functions cannot be carried out yet.

Switched On
(Operation
Disabled)

The motor supply voltage must be applied. The power stage is switched off. The motion functions cannot be
carried out yet.

Operation
Enabled

No fault present, power stage is switched on, motion functions are enabled. If the operation mode set performs
position control, the motor is held in position. If the operation mode set performs speed control, the motor is
kept at zero speed. If the operation mode is torque external, the motor is kept with zero torque. From this state,
the motor can execute motion commands.

Quick Stop
Active

Drive has been stopped with the quick stop deceleration. The power stage is enabled. If the drive was operating
in position control when quick stop command was issued, the motor is held in position. If the drive was operating
in speed control, the motor is kept at zero speed. If the drive was operating in torque control, the motor is kept
at zero torque.

Fault Reaction
Active

The drive performs a default reaction to the occurrence of an error condition

Fault
The motor power is turned off. The drive remains in fault condition, until it receives a Reset Fault command. If
following this command, all the bits from the Motion Error Register are reset, the drive exits the fault state

© Technosoft 2024 62 CANopen Programming

5.2 Drive control and status objects

5.2.1 Object 6040h: Controlword

The object controls the status of the drive. It is used to enable/disable the power stage of the drive, start/halt the motions
and to clear the fault status. The status machine is controlled through the Controlword.

Object description:

Index 6040h

Name Controlword

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Yes

Units -

Value range 0 … 65535

Default value No

Table 5.3 – Bit Assignment in Controlword

Bit Value Meaning

15
0 Registration mode inactive

1 Activate registration mode1

14
0

When an update is performed, keep unchanged the demand values for speed and position (TML
command TUM1;)

1
When an update is performed, update the demand values for speed and position with the actual
values of speed and position (TML command TUM0;)

13
When it is set, it cancels the execution of the TML function called through Object 2006h: Call TML
Function. The bit is automatically reset by the drive when the command is executed.

12

0 No action

1
If bit 14 = 1 – Force position demand value to 0
If bit 14 = 0 – Force position actual value to 0
This bit is valid regardless of the status of the drive or other bits in Controlword

11
Manufacturer Specific - Operation Mode Specific. The meaning of this bit is detailed further in
this manual for each operation mode

10-9 Reserved. Writes have no effect. Read as 0

8
0 No action

1 Halt command – the motor will slow down on slow down ramp

7
0 No action

1
Reset Fault. The faults are reset on 0 to 1 transition of this bit. After a Reset Fault command, the
master has to reset this bit.

4-6
Operation Mode Specific. The meaning of these bits is detailed further in this manual for each
operation mode

3 Enable Operation

2 Quick Stop

1 Enable Voltage

0 Switch On

The following table lists the bit combinations for the Controlword that lead to the corresponding state transitions. An X
corresponds to a bit state that can be ignored. The single exception is the fault reset: The transition is only started by a
bit transition from 0 to 1.

Table 5.4 – Command coding in Controlword

Command Bit in object 6040h Transition
 Bit 7 Bit 3 Bit 2 Bit 1 Bit 0

Shutdown 0 X 1 1 0 2,6,8

Switch on 0 0 1 1 1 3

Disable voltage 0 X X 0 X 7,9,10,12

Quick stop 0 X 0 1 X 7,10,11

Disable operation 0 0 1 1 1 5

Enable operation 0 1 1 1 1 4,16

Fault reset X X X X 13

For the command coding values see also Figure 5.1.1. Drive’s status machine. States and transitions.

1 The Registration mode offers the possibility to super-impose another motion profile on top of an existing electronic gearing profile, at

the slave level. For more details, check the “Electronic Gearing Position (EGEAR) Mode” chapter.

© Technosoft 2024 63 CANopen Programming

5.2.2 Object 6041h: Statusword

Object description:

Index 6041h

Name Statusword

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Yes

Units -

Value range 0 … 65535

Default value No

The Statusword has the following bit assignment:

Table 5.5 – Bit Assignment in Statusword

Bit Value Description

15
0 Axis off. Power stage is disabled. Motor control is not performed

1 Axis on. Power stage is enabled. Motor control is performed

14
0 No event set or the programmed event has not occurred yet

1 Last event set has occurred

13..12
Operation Mode Specific. The meaning of these bits is detailed further in this
manual for each operation mode

11 Internal Limit Active – see Remark 1 below

10 Target reached

9
0 Remote – drive is in local mode and will not execute the command message.

1
Remote – drive parameters may be modified via CAN and the drive will execute
the command message.

8
0

No TML function or homing is executed. The execution of the last called TML
function or homing is completed.

1
A TML function or homing is executed. Until the function or homing execution
ends or is aborted, no other TML function / homing may be called

7
0 No Warning

1
Warning. A TML function / homing was called, while another TML function /
homing is still in execution. The last call is ignored.

6 Switch On Disabled.

5 Quick Stop. When this bit is zero, the drive is performing a quick stop

4
0 Motor supply voltage is absent

See Remark 2 below
1 Motor supply voltage is present

3 Fault. If set, a fault condition is or was present in the drive.

2 Operation Enabled

1 Switched On

0 Ready to switch on

The drive state can be identified when Statusword coding is the following:

Table 5.6 – State coding in Statusword

Statusword Drive state

xxxx xxxx x0xx 0000b Not Ready to switch on

xxxx xxxx x1xx 0000b Switch on disabled

xxxx xxxx x01x 0001b Ready to switch on

xxxx xxxx x01x 0011b Switched on

xxxx xxxx x01x 0111b Operation enabled

xxxx xxxx x00x 0111b Quick stop active

xxxx xxxx x0xx 1111b Fault reaction active

xxxx xxxx x0xx 1000b Fault

For the state coding values see also Figure 5.1.1. Drive’s status machine. States and transitions.

Remark 1: Bit11 internal limit active is set when either the Positive or Negative limit switches is active. If the internal
register LSACTIVE = 1 or Object 60B8h: Touch probe function bit 6 = 1, this bit will not be set and the emergency
messages for the active limit switches will be disabled.

Remark 2: Bit 4 shows whether the +Vmot Input is supplied. The state machine cannot transition to states Switched On
and Operation enabled without this bit being set first. If this bit transitions to 0 while in Operation enabled or Switched
On states (+Vmot input is not present), the drive will enter fault state due to undervoltage error. If in a lower state than
switch On, the absence of +Vmot in will not trigger an undervoltage error.

© Technosoft 2024 64 CANopen Programming

5.2.3 Object 1002h: Manufacturer Status Register

This object is a common status register for manufacturer specific purposes.

Object description:

Index 1002h

Name Manufacturer status register

Object code VAR

Data type UNSIGNED32

Entry description:

Access RO

PDO mapping Optional

Value range UNSIGNED32

Default value No

Table 5.7 – Bit Assignment in Manufacturer Status Register

Bit Value Description

31 1 Drive/motor in fault status

30 1 Reference position in absolute electronic camming mode reached

29 1 Reserved

28 1 Gear ratio in electronic gearing mode reached

27 1 Drive I2t protection warning level reached

26 1 Motor I2t protection warning level reached

25 1 Target command reached

24 1 Capture event/interrupt triggered

23 1 Limit switch negative event / interrupt triggered

22 1 Limit switch positive event / interrupt triggered

21 1 AUTORUN mode enabled

20 1 Position trigger 4 reached

19 1 Position trigger 3 reached

18 1 Position trigger 2 reached

17 1 Position trigger 1 reached

16 1 Drive/motor initialization performed

15…0 Same as Object 6041h, Statusword

5.2.4 Object 6060h: Modes of Operation

The object selects the mode of operation of the drive.

Object description:

Index 6060h

Name Modes of Operation

Object code VAR

Data type INTEGER8

Entry description:

Access RW

PDO mapping Yes

Units -

Value range -128 … 127

Default value No

Data description:

Value Description

-128…-6 Reserved

-5 Manufacturer specific – External Reference Torque Mode1

-4 Manufacturer specific – External Reference Speed Mode1

-3 Manufacturer specific – External Reference Position Mode1

-2 Manufacturer specific – Electronic Camming Position Mode

-1 Manufacturer specific – Electronic Gearing Position Mode

0 Reserved

1 Profile Position Mode

2 Reserved

3 Profile Velocity Mode

4 Profile Torque Mode2

5 Reserved

1 The External Reference control mode is not available with firmware version FA01x
2 This mode is available starting with firmware version F514K or newer and FA01x.

© Technosoft 2024 65 CANopen Programming

6 Homing Mode

7 Interpolated Position Mode

8 Cyclic Synchronous Position Mode (CSP)

9 Cyclic sync Velocity Mode (CSV)1

10 Cyclic sync Torque Mode (CST)2

11…127 Reserved

Remark: The actual mode is reflected in Object 6061h: Modes of Operation Display.

5.2.5 Object 6061h: Modes of Operation Display

The object reflects the actual mode of operation set with Object 6060h: Modes of Operation.

If the drive is in an inferior state than Operation enabled and object 6060h Modes of operation is changed, object 6061h
will take the value of 6060h only after the drive reached Operation enabled state.

Object description:

Index 6061h

Name Modes of Operation Display

Object code VAR

Data type INTEGER8

Entry description:

Access RO

PDO mapping Possible

Units -

Value range -128 … 127

Default value -

Data description: Same as for object 6060h Modes of Operation.

5.3 Limit Switch functionality explained

5.3.1 Hardware limit switches LSP and LSN functionality

All drives have two limit switch inputs:

▪ LSP – positive limit switch
▪ LSN – negative limit switch

Triggering a limit switch during a motion causes the drive to enter automatically in quick stop active state
(statusword = xxxx xxxx x00x 0111b) where the deceleration value is defined in Object 6085h: Quick stop deceleration.
After the motor stops, it will continue to hold its position and wait until a new motion command is received in the opposite
direction of the active limit switch.

While the motor stops due to an activated limit switch, the Statusword (6041h) will still report the Operation
enabled state and NOT actually enter Quick stop state (where Statusword = xxxx xxxx x00x 0111b). Object 605Ah:
Quick stop option code will have no effect if a limit switch is activated.

If during a positive motion LSP is activated, the motor will enter quick stop.

If during a negative motion LSN is activated, the motor will enter quick stop.

If during a positive motion LSN is activated, nothing will happen.

If during a negative motion LSP is activated, nothing will happen.

Figure 5.3.1. Stopping a motion on the positive limit switch

Figure 5.3.1 depicts a positive motion where the speed increases from t0 until t1 using the acceleration value defined
in Object 6081h: Profile velocity. At moment t2, the positive limit switch is activated and the drive automatically enters
quick stop state where it decelerates using the value defined in Object 6085h: Quick stop deceleration.

1 This mode is available starting with firmware version FA01x.

© Technosoft 2024 66 CANopen Programming

While the positive limit switch is active, no new positive motion will be accepted by the drive. Only a negative motion is
accepted while LSP is active.

While the negative limit switch is active, no new negative motion will be accepted by the drive. Only a positive motion is
accepted while LSN is active.

A limit switch can be defined as active while the input is in the low or high state in the Inputs/Outputs section:

Figure 5.3.2. Configuring the limit switch active state

Statusword Bit11 (internal limit active) is set when either the Positive or Negative limit switch is active. If the internal
parameter LSACTIVE = 1 or object 60B8h bit 6 = 1, Statusword bit11 will not be set and the emergency messages for
the active limit switches will be disabled. If the limit switches inputs are disabled, they can be used as regular digital
inputs.

If the positive limit switch is activated, the emergency error code 0x5443 will be sent automatically and object 2000h bit
6 will be 1.

If the negative limit switch is activated, the emergency error code 0x5442 will be sent automatically and object 2000h
bit 7 will be 1.

When a limit switch becomes inactive, the emergency error code 0x0000 will be sent automatically and object 2000h bit
6 or 7 will return to 0.

All iPOS and Micro drives can also use the limit switch inputs in order to capture the motor or load position. This function
is configurable through Object 60B8h: Touch probe function and Object 2104h: Auxiliary encoder function. If the
feedback type is incremental encoder, the position is captured within several µs. If the feedback type is
SSI/BiSS/Resolver/Linear halls or Sin/Cos, the captured position is the latest one computed in the position loop, so by
default it may be up to 1 ms old.

5.3.2 Software limit switches functionality

The software limit switches work just like the hardware limit switches (LSP, LSN) in terms of functionality. An individual
position value is chosen for the negative and positive limits and when those values are reached, the drive will quick
stop. A new motion will be accepted only if the motion is opposite the active software or hardware limit switch.

Figure 5.3.3. Configuring the software limit switches position values.

The software limit switches can also be configured through Object 607Dh: Software position limit.

If the positive software limit switch is activated, the emergency error code 0xFF06 will be sent automatically and Object
2002h: Detailed Error Register (DER) bit 6 will be 1.

If the negative software limit switch is activated, the emergency error code 0xFF07 will be sent automatically and Object
2002h: Detailed Error Register (DER) bit 7 will be 1.

When a limit switch becomes inactive, the emergency error code 0x0000 will be sent automatically and Object 2002h:
Detailed Error Register (DER) bit 6 or 7 will return to 0.

© Technosoft 2024 67 CANopen Programming

5.4 Error monitoring

5.4.1 Object 2000h: Motion Error Register

The Motion Error Register displays all the drive possible errors. A bit set to 1 signals that a specific error has occurred.
When the error condition disappears or the error is reset using a Fault Reset command, the corresponding bit is reset
to 0.

The Motion Error Register is continuously checked for changes of the bits status.

Object description:

Index 2000h

Name Motion Error Register

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65535

Default value 0

Table 5.8 – Bit Assignment in Motion Error Register

Bit Description

15
Drive disabled due to enable or STO input. Set when enable or STO input is on disable state. Reset when enable or
STO input is on enable state

14
Command error. This bit is set in several situations. They can be distinguished either by the associated emergency
code, or in conjunction with other bits from the DER (2002h) register.

13 Under-voltage. Set when protection is triggered. Reset by a Reset Fault command

12 Over-voltage. Set when protection is triggered. Reset by a Reset Fault command

11 Over temperature drive. Set when protection is triggered. Reset by a Reset Fault command.

10
Over temperature motor. Set when protection is triggered. Reset by a Reset Fault command. This protection may be
activated if the motor has a PTC or NTC temperature contact.

9 I2T protection. Set when protection is triggered. Reset by a Reset Fault command

8 Over current. Set when protection is triggered. Reset by a Reset Fault command

7 Negative limit switch active. Set when LSN input is in active state. Reset when LSN input is inactive state

6 Positive limit switch active. Set when LSP input is in active state. Reset when LSP input is inactive state

5
For F514G and newer: Feedback error. Details found in DER2 (2009h) bits. Set when protection is triggered. Reset by
a Reset Fault command.
For F508x/509x; F523x/524x, it represents either digital Hall sensor missing or position wraparound.

4 Communication error. Set when protection is triggered. Reset by a Reset Fault command

3 Control error (position/speed error too big). Set when protection is triggered. Reset by a Reset Fault command

2 Invalid setup data. Set when the EEPROM stored setup data is not valid or not present.

1 Short-circuit. Set when protection is triggered. Reset by a Reset Fault command

0 CAN error. Set when CAN controller is in error mode. Reset by a Reset Fault command

5.4.2 Object 2001h: Motion Error Register Mask

The Motion Error Register Mask offers the possibility to choose which of the errors set or reset in the Motion Error
Register to be signaled via emergency messages. The Motion Error Register Mask has the same bit codification as the
Motion Error Register (see Table above) and the following meaning:
1 – Send an emergency message when the corresponding bit from the Motion Error Register is set

0 – Don’t send an emergency message when the corresponding bit from the Motion Error Register is set.
Object description:

Index 2001h

Name Motion Error Register Mask

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Units -

Value range 0 … 65535

Default value 65535

© Technosoft 2024 68 CANopen Programming

5.4.3 Object 2002h: Detailed Error Register (DER)

The Detailed Error Register displays detailed information about the errors signaled with command Error bit from Motion
Error Register. Not all bits represent errors. This register also displays the status of software limit switches and lock
EEPROM status. A bit set to 1 signals that a specific error has occurred. When the error condition disappears or the
error is reset using a Fault Reset command, the corresponding bit is reset to 0.
Object description:

Index 2002h

Name Detailed Error Register

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65535

Default value 0

Table 5.9 – Bit Assignment in Detailed Error Register

Bit Description

15 EEPROM Locked; an attempt to write in the EEPROM will be ignored.

14 STO or Enable circuit hardware error

13 Self-check error; Internal memory (OTP) checksum error

12 reserved

11 Start mode failed; Motionless start or pole lock minimum movement failed

10
Encoder broken wire; On a brushless motor, either the digital halls or the incremental encoder signal
was interrupted

9 Update ignored for S-curve

8 S-curve parameters caused an invalid profile. UPD instruction was ignored.

7 Negative software limit switch is active.

6 Positive software limit switch is active.

5 Cancelable call instruction received while another cancelable function was active.

4
UPD instruction received while AXISON was executed. The UPD instruction was ignored and it must
be sent again when AXISON is completed.

3 A call to an inexistent function was received.

2 A call to an inexistent homing routine was received.

1 A RET/RETI instruction was executed while no function/ISR was active.

0 The number of nested function calls exceeded the length of TML stack. Last function call was ignored.

5.4.4 Object 2009h: Detailed Error Register 2 (DER2)4F

1

The Detailed Error Register 2 mostly displays detailed information about the errors signaled with command Feedback
error bit 5 from Motion Error Register (2000h). A bit set to 1 signals that a specific error has occurred. When the error
condition disappears or the error is reset using a Fault Reset command, the corresponding bit is reset to 0.
Object description:

Index 2009h

Name Detailed Error Register 2

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65535

Default value 0

Table 5.10 – Bit Assignment in Detailed Error Register 2

Bit Description

15 Output frequency. The imposed speed exceeds the DUAL USE European regulation limit.

14..6 reserved

6 Position wraparound.

5 Hall sensor missing; can be either Digital or Linear analogue hall error.

4 Absolute Encoder Interface (AEI) interface error; applies only to iPOS80x0 drives.

3 BiSS sensor missing; No BiSS sensor communication detected.

2 BiSS data error bit is set.

1 BiSS data warning bit is set.

0 BiSS data CRC error.

1 Available only in firmware versions F514x and FA01x.

© Technosoft 2024 69 CANopen Programming

5.4.5 Object 2003h: Communication Error Register (CER)

The Communication Error Register (CER) is a 16-bit status register, containing information about communication errors
on CAN, SPI and SCI communication channels. A bit set to 1 signals that a specific error has occurred. When the error
condition disappears or the error is reset using a Fault Reset command, the corresponding bit is reset to 0.

Object description:

Index 2003h

Name Communication Error Register

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65535

Default value 0

Table 5.11 – Bit Assignment in Communication Error Register

Bit Description

15..8 reserved

7 SPI timeout on write operation

6
CAN bus off error. It is automatically reset if the drive successfully receives a new message
over CAN.

5 CAN transmission overrun error

4 CAN reception overrun error

3 CAN reception timeout error

2 RS232 reception timeout error

1 RS232 transmission timeout error

0 RS232 reception error

5.4.6 Object 603Fh: Error code1

This object provides the error code of the last error which occurred in the drive device. These error codes are always
transmitted as Emergency messages.

The error codes are described in Table 4.2 – Emergency Error Codes.

Object description:

Index 603Fh

Name Error Code

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Yes

Units -

Value range 0 … 65535

Default value 0

5.4.7 Object 605Ah: Quick stop option code

This object determines what action should be taken if the quick stop function is executed. The slowdown ramp is a
deceleration value set by the Object 6083h: Profile acceleration. The quick stop ramp is a deceleration value set by the
Object 6085h: Quick stop deceleration.

Object description:

Index 605Ah

Name Quick stop option code

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range -32768 … 32767

Default value 2

1 Available starting with firmware version FA01x.

© Technosoft 2024 70 CANopen Programming

Data description:

Value Description

-32768…-1 Manufacturer specific

0 Disable drive function

1
Slow down on slow down ramp and transit into Switch On
Disabled

2
Slow down on quick stop ramp and transit into Switch On
Disabled

3 Reserved

4 Reserved

5 Slow down on slow down ramp and stay in Quick Stop Active

6 Slow down on quick stop ramp and stay in Quick Stop Active

7…32767 Reserved

5.4.8 Object 605Bh: Shutdown option code

This object determines what action is taken if when there is a transition from Operation Enabled state to Ready to Switch
On state. The slowdown ramp is a deceleration value set by the Object 6083h: Profile acceleration.

Object description:

Index 605Bh

Name Shutdown option code

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range -32768 … 32767

Default value 0

Data description:

Value Description

-32768…-1 Manufacturer specific

0
Disable drive function (switch-off the
drive power stage)

1
Slow down on slowdown ramp and
disable the drive function

2…32767 Reserved

5.4.9 Object 605Ch: Disable operation option code

This object determines what action is taken if when there is a transition from Operation Enabled state Switched On
state. The slowdown ramp is a deceleration value set by the Object 6083h: Profile acceleration.

Object description:

Index 605Ch

Name Disable operation option code

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range -32768 … 32767

Default value 1

Data description:

Value Description

-32768…-1 Manufacturer specific

0
Disable drive function (switch-off the
drive power stage)

1
Slow down on slow down ramp and
disable the drive function

2…32767 Reserved

5.4.10 Object 605Dh: Halt option code

This object determines what action is taken if when the halt command is executed. The slowdown ramp is a deceleration
value set by Object 6083h: Profile acceleration. The quick stop ramp is a deceleration value set by Object 6085h: Quick
stop deceleration.

© Technosoft 2024 71 CANopen Programming

Object description:

Index 605Dh

Name Halt option code

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range -32768 … 32767

Default value 1

Data description:

Value Description

-32768…-1 Manufacturer specific

0 Reserved

1
Slow down on slow down ramp and
stay in Operation Enabled

2
Slow down on quick stop ramp and
stay in Operation Enabled

3…32767 Reserved

5.4.11 Object 605Eh: Fault reaction option code

This object determines what action should be taken if a non-fatal error occurs in the drive. The non-fatal errors are by
default the following:

• Under-voltage

• Over-voltage

• I2t error1 –when the internal register ASR bit1 is 0 in setup.

• Drive over-temperature

• Motor over-temperature

• Communication error (when object 6007h option 1 is set)

Object description:

Index 605Eh

Name Fault reaction option code

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range -32768 … 32767

Default value 2

Data description:

Value Description

-32768…-2 Manufacturer specific

-1 No action

0 Disable drive, motor is free to rotate

1 Reserved

2 Slow down with quick stop ramp

3…32767 Reserved

5.4.12 Object 6007h: Abort connection option code

The object sets the action performed by the drive when one of the following events occurs: bus-off, heartbeat and life
guarding.

Object description:

Index 6007h

Name Abort connection option code

Object code VAR

Data type INTEGER16

1 Starting with firmware version FA01C, I2t is no longer a "non-fatal error" that can be configured through object 605Eh.

© Technosoft 2024 72 CANopen Programming

Entry description:

Access RW

PDO mapping Yes

Value range -32768…32767

Default value

For F514x firmware 1 (fault if communication error)

For F508/509/523 and
524x firmware

0 (no action if communication
error)

Table 5.12 – Abort connection option codes values

Option code Description

-32768…-1 Manufacturer specific (reserved)

0 No action

+1
Fault signal - Execute specific fault routine set in Object
605Eh: Fault reaction option code

+2 Disable voltage command

+3 Quick stop command

+4…+32767 Reserved

The default value for this object can be changed by editing the parameter “x6007” found in parameters.xml of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

5.4.13 Object 2114h: Fault Override Option Code1

This object serves as a mean to define a custom action routine when specific errors are triggered. Once activated, the
custom routine has a higher priority in comparison to the actions defined in Object 6007h: Abort connection option code
and Object 605Eh: Fault reaction option code.

Each bit within this object corresponds to an error found in Object 2000h: Motion Error Register, and by setting the
corresponding bit to 1, the fault routine can be customized using the options described in Object 2113h: Detailed Option
Code.

Object description:

Index 2114Eh

Name Override Option Code

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range 0 … 65535

Default value 32768

Data description:

Bit Description

0 Communication error

1 Short-Circuit

2 Reserved

3 Control error

4…7 Reserved

8 Over current

9 Reserved

10 Over temperature - Motor

11 Over temperature - Drive

12 Over voltage

13 Under voltage

14 Reserved

15 Enable / STO inactive

1 Available starting with FA01C firmware version or newer

© Technosoft 2024 73 CANopen Programming

5.4.14 Object 2113h: Detailed Option Code1

This object establishes the available actions for customizing a fault routine associated with each error described in
Object 2114h: Fault Override Option Code. These designated options will be implemented only when the corresponding
bit in Object 2114 is activated; otherwise, the settings will remain inactive.

Object description:

Index 2113Eh

Name Detailed Option Code

Object code VAR

Data type UNISGNED16

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 1…15

Default value 15

Sub-index 1

Description Short-Circuit option code*

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 2

Description Reserved

Sub-index 3

Description Control error option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 4

Description Communication error option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 5, 6, 7

Description Reserved

Sub-index 8

Description Over current option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 9

Description Reserved

Sub-index 10

Description Over temperature – Motor option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

1 Available starting with FA01C firmware version or newer

© Technosoft 2024 74 CANopen Programming

Sub-index 11

Description Over temperature – Drive option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 12

Description Over voltage option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 13

Description Under voltage option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 0

Sub-index 14

Description Reserved

Sub-index 15

Description Enable / STO inactive* option code

Access RW

PDO mapping NO

Value range UNSIGNED16

Default value 32768

Table 5.13 – Sub-index bit description

Bit Value Description

15
0 Do not generate a TML interrupt

1 Generate a TML interrupt

8…14 0 Reserved

0…7

0 Disable drive

2 Quick stop

-1 No action

* For the Short circuit and Enable/STO inactive option codes, only the customization of bit 15 is possible.

5.5 Digital I/O control and status objects

5.5.1 Object 60FDh: Digital inputs

The object contains the actual value of the digital inputs available on the drive. Each bit from the object corresponds to
a digital input (manufacturer specific or device profile defined). If a bit is SET, then the status of the corresponding input
is logical ‘1’ (high). If the bit is RESET, then the corresponding drive input status is logical ‘0’ (low).
Remarks:

The device profile defined inputs (limit switches, home input and interlock) are mapped also on the manufacturer specific
inputs. Hence, when one of these inputs changes the status, then both bits change, from the manufacturer specific list
and from the device profile list.

The number of available digital inputs is product dependent. Check the drive user manual for the available digital inputs.

Object description:

Index 60FDh

Name Digital inputs

Object code VAR

Data type UNSIGNED32

Entry description:

Access RO

PDO mapping Possible

Value range UNSIGNED32

Default value 0

© Technosoft 2024 75 CANopen Programming

 Bit Value Description

M
a

n
u
fa

c
tu

re
r

s
p
e
c
if
ic

31 IN15 status

30 IN14 status

29 IN13 status

28 IN12 status

27 IN11 status

26 IN10 status

25 IN9 status

24 IN8 status

23 IN7 status

22 IN6 status

21 IN5 status

20 IN4 status

19 IN3 status

18 IN2 status

17 IN1 status

16 IN0 status

D
e
v
ic

e
 p

ro
fi
le

 d
e
fi
n

e
d

15..4 Reserved

3
0

Interlock (Drive enable/ STO input) deactivated; drive may
not apply power to motor. Enter Switch on disabled state.

1
Interlock (Drive enable/ STO input) activated; drive may
apply power to motor

2
0 Home switch input status is low

1 Home switch input status is high

1
0 Positive limit switch is inactive

1 Positive limit switch is active

0
0 Negative limit switch is inactive

1 Negative limit switch is active

5.5.2 Object 208Fh: Digital inputs 8bit

This object has 2x8 bit sub-indexes that show the same data as object Object 60FDh: Digital inputs. Mapping shorter
data to a PDO decreases the total CAN bus load. This is especially helpful when there are many devices in a network
and the data transmission cycle time is low.

Remark:

The number of available digital inputs is product dependent. Check the drive user manual for the available digital inputs.

Object description:

Index 208Fh

Name Digital inputs 8bit

Object code ARRAY

Data type UNSIGNED8

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 1…2

Default value 2

Sub-index 1

Description Device profile defined inputs

Access RO

PDO mapping Possible

Value range UNSIGNED8

Default value no

Sub-index 2

Description Manufacturer specific inputs

Access RO

PDO mapping Possible

Value range UNSIGNED8

Default value no

© Technosoft 2024 76 CANopen Programming

Table 5.14 – Sub-index 1 bit description

 Bit Value Description

2

0
8

F
h
:0

1

D

e
v
ic

e
 p

ro
fi
le

 d
e

fi
n
e

d
 i
n

p
u
t

4..7 Reserved

3

0
Interlock (Drive enable/STO input) activated; drive
may apply power to motor

1
Interlock (Drive enable/STO input) deactivated; drive
may not apply power to motor. Enter Switch on
disabled state.

2
0 Home switch input status is low

1 Home switch input status is high

1
0 Positive limit switch is inactive

1 Positive limit switch is active

0
0 Negative limit switch is inactive

1 Negative limit switch is active

Table 5.15 – Sub-index 2 bit description

 Bit Value Description

2

0
8

F
h
:0

2

M
a

n
u

fa
c
tu

re
r

s
p

e
c
if
ic

in
p

u
ts

7 IN7 status

6 IN6 status

5 IN5 status

4 IN4 status

3 IN3 status

2 IN2 status

1 IN1 status

0 IN0 status

5.5.3 Object 60FEh: Digital outputs

The object controls the digital outputs of the drive. The first sub-index sets the outputs state to high or low if the mask
allows it in the second sub-index, which defines the outputs that can be controlled.

For drives with NPN-type outputs, the behavior of the outputs is as follows:

• When an output bit is SET (1):
The corresponding drive output is switched to a logical ‘1’ (high). In this state, the output disconnects the load
from the ground (GND). Essentially, the circuit to the GND is open.

• When an output bit is RESET (0):
The corresponding drive output is switched to a logical ‘0’ (low). In this state, the output connects the load to
the ground (GND), effectively completing the circuit to GND.

Remarks:

• The actual number of available digital outputs is product dependent. Check the drive user manual for the
available digital outputs.

• If an unavailable digital output is selected in sub-index 2, the drive will issue an emergency message with ID
0xFF05.

Object description:

Index 60FEh

Name Digital outputs

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 1…2

Default value 2

Sub-index 1

Description Physical outputs

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0

© Technosoft 2024 77 CANopen Programming

Sub-index 2

Description Bit mask

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0

Table 5.16 – Bit mask description

 Bit Description

M
a

n
u

fa
c
tu

re
r

S
p

e
c
if
ic

31 OUT15 command

30 OUT14 command

29 OUT13 command

28 OUT12 command

27 OUT11 command

26 OUT10 command

25 OUT9 command

24 OUT8 command

23 OUT7 command

22 OUT6 command

21 OUT5 command

20 OUT4 command

19 OUT3 command

18 OUT2 command

17 OUT1 command

16 OUT0 command

D
e
v
ic

e
 p

ro
fi
le

D
e
fi
n

e
d

15…0 Reserved

5.5.3.1 Example for setting the digital outputs

The example will Set OUT0 to 0(connect to GND) and OUT1 to 1 (disconnect from GND).
1. Set sub-index 1 with the needed outputs states. Set bit 16 (OUT0) to 0 and bit17 (OUT1) to 1.

Set in 60FEh sub-index1 to 0x00020000.
2. Set sub-index 2 bit mask only with the output values that need to be changed. Set bit 16 and 17 to 1 to

allow the change of OUT0 and OUT1 states.
Set in 60FEh sub-index2 to 0x00030000.

After the second sub-index is set, the selected outputs will switch their state to the values defined in sub-index 1.

5.5.4 Object 2090h: Digital outputs 8bit

Has the same functionality as Object 60FEh: Digital outputs, only that its two sub-indexes are 8 bit instead of 32bit.
Mapping shorter data to a PDO decreases the total CAN bus load. This is especially helpful when there are many
devices in a network and the data transmission cycle time is low.

Object description:

Index 2090h

Name Digital outputs 8bit

Object code ARRAY

Data type UNSIGNED8

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 1…2

Default value 2

Sub-index 1

Description Physical outputs 8bit

Access RW

PDO mapping Possible

Value range UNSIGNED8

Default value 0

© Technosoft 2024 78 CANopen Programming

Sub-index 2

Description Bit mask 8bit

Access RW

PDO mapping Possible

Value range UNSIGNED8

Default value 0

Table 5.17 – Sub-index 1&2 Bit description

 Bit Description

M
a

n
u

fa
c
tu

re
r

S
p

e
c
if
ic

 O
u

tp
u

ts

7 OUT7 command

6 OUT6 command

5 OUT5 command

4 OUT4 command

3 OUT3 command

2 OUT2 command

1 OUT1 command

0 OUT0 command

5.5.5 Object 2045h: Digital outputs status

The actual status of the drive outputs can be monitored using this object.

Object description:

Index 2045h

Name Digital outputs status

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range UNSIGNED16

Default value No

Data description:

Bit Meaning Bit Meaning

15 OUT15 status 7 OUT7 status

14 OUT14 status 6 OUT6 status

13 OUT13 status 5 OUT5 status

12 OUT12 status 4 OUT4 status

11 OUT11 status 3 OUT3 status

10 OUT10 status 2 OUT2 status

9 OUT9 status 1 OUT1 status

8 OUT8 status 0 OUT0 status

If the any of the bits is SET, then the corresponding drive output status is logical ‘1’ (high). If the bit is RESET, then the
corresponding drive output status is logical ‘0’ (low).

5.5.6 Object 2102h: Brake status

In Setup, under Mechanical configuration section, one digital output can be assigned as a brake output. The output will
be SET or RESET when the motor PWM power is turned OFF or ON.

This object will show 1 when the brake output is active and 0 when not.

Object description:

Index 2102h

Name Brake status

Object code VAR

Data type USINT8

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 or 1

Default value No

© Technosoft 2024 79 CANopen Programming

5.5.7 Object 2046h: Analogue input: Reference

The object contains the actual value of the analog reference applied to the drive. Through this object, one can supervise
the analogue input dedicated to receive the analogue reference in the external control modes.

Object description:

Index 2046h

Name Analogue input: Reference

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65520

Default value No

5.5.8 Object 2047h: Analogue input: Feedback

The object contains the actual value of the analogue feedback applied to the drive.

Object description:

Index 2047h

Name Analogue input: Feedback

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65520

Default value No

5.5.9 Object 2055h: DC-link voltage

The object contains the actual value of the DC-link voltage. The object is expressed in internal voltage units.

Object description:

Index 2055h

Name Analogue input: DC-link voltage

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Units DC-VU

Value range 0 … 65520

Default value No

The computation formula for the voltage [IU] in [V] is: 𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑[𝑉] = 𝑉𝐷𝐶𝑀𝑎𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒[𝑉]65520 ⋅ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑[𝐼𝑈]
where VDCMaxMeasurable is the maximum measurable DC voltage expressed in [V]. You can read this value in the
Protections and Limits section within the Drive Data dialog.

5.5.10 Object 2058h: Drive Temperature

The object contains the actual drive temperature. The object is expressed in temperature internal units.

Object description:

Index 2058h

Name Analogue input for drive temperature

Object code VAR

Data type UNSIGNED16

© Technosoft 2024 80 CANopen Programming

Entry description:

Access RO

PDO mapping Possible

Units -

Value range 0 … 65535

Default value No

Note: if the drive does not have a temperature sensor, this object should not be used.

The computation formula for the temperature [IU] in [°C] is: Temp[°C] = 3.3DriveTempSensorGain*65520 * (Temp[IU] − DriveTempOutAt0 𝑜C*655203.3)

where DriveTempSensorGain and DriveTempOutAt0°C parameters are available as Sensor Gain and Output at 0 °C,
respectively, in the Protections and Limits section within the Drive Data dialog.

5.5.11 Object 2108h: Filter variable 16bit

This object applies a first order low pass filer on a 16 bit variable value. It does not affect the motor control when applied.
It can be used only for sampling filtered values of one variable like the motor current.

Object description:

Index 2108h

Name Filter variable 16bit

Object code Record

Data type Filter variable record

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 3

Default value 3

Sub-index 1

Description 16 bit variable address

Access RW

PDO mapping Possible

Value range UNSIGNED16

Default value 0x0230 (address. or motor current)

Sub-index 2

Description Filter strength

Access RW

PDO mapping Possible

Value range UNSIGNED16

Default value 50

Sub-index 3

Description Filtered variable 16bit

Access RO

PDO mapping Possible

Value range 0 -32767

Default value -

5.5.11.1 How object 2108h works:

Sub-index 1 sets the filtered variable address. To find a variable address, in EasyMotion Studio II, click Tools |
Command Interpreter. The communication must be online with the drive. Write the desired variable name with a ? in
front and press Enter.

© Technosoft 2024 81 CANopen Programming

The variable address can be found between the parenthesis.

Sub-index 2 sets the filter strength. The filter is strongest when Sub-index 2 = 0 and weakest when it is 32767. A strong
filter increases the time lag between the unfiltered variable change and the filtered value reaching that value.

Sub-index 3 shows the filtered value of the 16 bit variable whose address is declared in Sub-index 1.

5.6 Protections Setting Objects

5.6.1 Object 607Dh: Software position limit 5F

1

The object sets the maximal and minimal software position limits. If the actual position is lower than the negative position
limit or higher than the positive one, a software position limit emergency message will be launched. If either of these
limits is passed, the motor will start decelerating using the value set in Object 6085h: Quick stop deceleration. Once it
has decelerated, the motor will stand still until a new command is given to travel within the space defined by the limits.

Remarks:

A value of -2147483648 for Minimal position limit and 2147483647 for Maximal position limit disables the position limit
check.

Object description:

Index 607Dh

Name Software position limit

Object code ARRAY

Data type INTEGER32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Minimal position limit

Access RW

PDO mapping Possible

Value range INTEGER32

Default value 0x80000000

Sub-index 2

Description Maximal position limit

Access RW

PDO mapping Possible

Value range INTEGER32

Default value 0x7FFFFFFF

5.6.2 Object 2050h: Over-current protection level

The Over-Current Protection Level object together with Object 2051h: Over-current time out defines the drive over-
current protection limits. The object defines the value of current in the drive, over which the over-current protection will
be activated, if lasting more than a time interval that is specified in object 2051h. It is set in current internal units.

Object description:

Index 2050h

Name Over-current protection level

Object code VAR

Data type UNSIGNED16

Entry description:

1 Object 607Dh is available with firmware version F514I or newer and FA01x.

© Technosoft 2024 82 CANopen Programming

Access RW

PDO mapping No

Units CU

Value range 0 … 32767

Default value No

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the command value for object 2050h.

5.6.3 Object 2051h: Over-current time out

The Over-Current time out object together with Object 2050h: Over-current protection level defines the drive over-current
protection limits. The object sets the time interval after which the over-current protection is triggered if the drive current
exceeds the value set through object 2050h. It is set in time internal units.
Object description:

Index 2051h

Name Over-current time out

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Units TU

Value range 0 … 65535

Default value No

5.6.4 Object 2052h: Motor nominal current

The object sets the maximum motor current RMS value for continuous operation. This value is used by the I2t motor
protection and one of the start methods. It is set in current internal units. See Object 2053h: I2t protection integrator limit
for more details about the I2t motor protection.
Object description:

Index 2052h

Name Motor nominal current

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Units CU

Value range 0 … 32767

Default value No

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 2052h.

5.6.5 Object 2053h: I2t protection integrator limit

Objects 2053h and 2054h contain the parameters of the I2t protection (against long-term motor over-currents). Their
setting must be coordinated with the setting of the Object 2052h: Motor nominal current. Select a point on the I2t motor
thermal protection curve, which is characterized by the points I_I2t (current, [A]) and t_I2t: (time, [s]) (see Figure 5.6.1)

Figure 5.6.1.I2t motor thermal protection curve

The points I_I2t and t_I2t on the motor thermal protection curve together with the nominal motor current In define the
surface SI2t. If the motor instantaneous current is greater than the nominal current In and the I2t protection is activated,
the difference between the square of the instantaneous current and the square of the nominal current is integrated and

© Technosoft 2024 83 CANopen Programming

compared with the SI2t value (see Figure 5.6.2). When the integral equals the SI2t surface, the I2t protection is
triggered.

Object description:

Index 2053h

Name I2t protection integrator limit

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Units -

Value range 0 … 231-1

Default value No

Figure 5.6.2. I2t protection implementation

The computation formula for the i2t protection integrator limit (I2TINTLIM) is 𝐼2𝑇𝐼𝑁𝑇𝐿𝐼𝑀 = (𝐼_𝐼2𝑡)2 − (𝐼𝑛)2327672 ⋅ 226

where I_I2t and In are represented in current units (CU).

5.6.6 Object 2054h: I2t protection scaling factor

Object description:

Index 2054h

Name I2t protection scaling factor

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Units -

Value range 0 … 65535

Default value No

The computation formula for the i2t protection scaling factor (SFI2T) is 𝑆𝐹𝐼2𝑇 = 226 ⋅ 𝑇𝑠_𝑆𝑡_𝐼2𝑡

where Ts_S is the sampling time of the speed control loop [s], and t_I2t is the I2t protection time corresponding to the
point on the graphic in Figure 5.6.1.

5.6.7 Object 207Fh: Current limit

The object defines the maximum current that will pass through the motor. This object is valid only for the configurations
using: brushless, DC brushed and stepper closed loop motor. The value is set in current internal units.

Object description:

Index 207Fh

Name Current limit

Object code VAR

Data type Unsigned16

Entry description:

© Technosoft 2024 84 CANopen Programming

Access RW

PDO mapping YES

Units -

Value range 0 … 65535

Default value No

The computation formula for the current_limit [A] to [IU] is: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐿𝑖𝑚𝑖𝑡[𝐼𝑈] = 32767 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐿𝑖𝑚𝑖𝑡[𝐴] ⋅ 655202 ⋅ 𝐼𝑝𝑒𝑎𝑘

where Ipeak is the peak current supported by the drive, Current_Limit[A] is the target current in [A] and Current_Limit[IU]
is the target value to be written in object 207Fh.

5.7 Step Loss Detection for Stepper Open Loop configuration

In a stepper open-loop configuration, the command resolution can exceed that of a standard closed-loop configuration.
For instance, with a motor featuring 200 steps per revolution and 256 microsteps per step, the position command
achieves a resolution of 51,200 Internal Units per revolution. By comparison, a 1,000-line quadrature encoder provides
feedback at 4,000 Internal Units per revolution.
When step-loss detection is employed, an encoder monitors the open-loop stepper motor to identify any lost steps. If
the protection mechanism is triggered, the drive transitions to a Fault state, signaling a Control Error. To activate this
protection, select the Stepper Open Loop + Encoder on Motor configuration and set an appropriate Control Error
Protection value.

5.7.1 Object 2083h: Encoder Resolution for step loss protection

Sets the number of encoder increments for one full motor rotation. For example, if an encoder has 2000
increments/revolution, then 2000 must be written into the object.

Remark: The value for this object is automatically calculated in the setup when choosing a Stepper Open Loop with
feedback on motor configuration.

Object description:

Index 2083h

Name
Encoder resolution for step loss
protection

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Yes

Value range UNSIGNED32

Default value -

The value for this object can be changed by editing the parameter “ENCRESLONG” found in parameters.xml of the
project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

5.7.2 Object 2084h: Stepper Resolution for step loss protection

Sets the number of microsteps the step motor does for one full rotation. For example, if the motor has 100 steps /
revolution (see Figure 5.7.1) and is controlled with 256 microsteps / step (see Figure 5.7.2), the value 100x256=25600
should be found into this object.

Remark: The value for this object is automatically calculated in the setup when choosing a Stepper Open Loop with
feedback on motor configuration.

Object description:

Index 2084h

Name
Stepper resolution for step loss
protection

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Yes

Value range UNSIGNED32

Default value -

© Technosoft 2024 85 CANopen Programming

Figure 5.7.1. Motor steps / revolution

Figure 5.7.2. Motor microsteps / step

The value for this object can be changed by editing the parameter “STEPRESLONG” found in parameters.xml of the
project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

5.7.3 Enabling step loss detection protection

Before enabling the step loss detection protection, the Encoder resolution in Object 2083h: Encoder Resolution for step
loss protection and the Stepper resolution in Object 2084h: Stepper Resolution for step loss protection must be set
correctly. These two objects should already be set automatically if the correct setup parameters were introduced. In
addition, the feedback sensor must be set on motor in the Feedback setup:

Figure 5.7.3. Configuring the feedback sensor for step loss detection

The step loss detection protection parameters are actually the control error parameters: object Object 6066h: Following
error time out and object Object 6065h: Following error window. The protection is triggered if the error between the
commanded position and the position measured via the encoder is greater than the value set in object 6065h for a time
interval greater than the value set in object 6066h.

© Technosoft 2024 86 CANopen Programming

The following error window is expressed in microsteps. The Following error time is expressed in multiples of
position/speed control loops (1ms by default for stepper configurations).

To enable the step loss detection protection, set first the Object 6065h: Following error window, then set the Object
6066h: Following error time out to a value different from 65535 (0xFFFF). To disable this protection, set a 65535 value
in object 6066h.

Example: Following error window is set to 1000 and Following error time is set to 20. The step motor has 100 steps/rev
and is controlled with 256 microsteps/step. The step loss protection will be triggered if the difference between the
commanded position and the measured position is bigger than 1000 microsteps (i.e. 1000/(100*256) rev = 14,06
degrees) for a time interval bigger or equal than 20 control loops of 1ms each i.e. 20ms.

Remark: the actual value of the error between the commanded position and the measured position can be read from
object 60F4h. It is expressed in microsteps.

5.7.4 Step loss protection setup

The following steps are recommended for optimal setup of the step loss protection parameters:

Move your motor with the highest velocity and load planned to be used in your application

During the movement at maximal speed, read object Object 60F4h: Following error actual value as often as possible to
determine its highest value.

Remark: Following error actual value can be read at every control loop using EasyMotion Studio II by logging
the TML variable POSERR.

Add a margin of about 25% to the highest error value determined at previous step and set the new obtained value into
object Object 6065h: Following error window.

Activate the step loss detection by writing a non-zero value in object Object 6066h: Following error time out.
Recommended values are between 1 and 10.

5.7.5 Recovering from step loss detection fault

When the step loss detection protection is triggered, the drive enters in Fault state. The CANopen master will receive
an emergency message from the drive with control error/following error code. In order to exit from Fault state and restart
a motion, the following steps must be performed:

• Send fault reset command to the drive. The drive will enter in Switch On Disabled state;

• Send Disable voltage command into Controlword.

• Send Switch On command into Controlword.

• Send Enable operation into Controlword. At this moment, voltage is applied to the motor and it will execute the
phase alignment procedure again. The position error will be reset automatically.

• Start a homing procedure to find again the motor zero position.

5.7.6 Remarks about Factor Group settings when using step the loss detection

When the drive controls stepper motors in open loop, if the factor group settings are activated they are automatically
configured for correspondence between motor position in user units and microsteps as internal units. Because the motor
position is read in encoder counts, it leads to incorrect values reported in objects Object 6064h: Position actual value
and Object 6062h: Position demand value.

Only Object 6063h: Position actual internal value will always show the motor position correctly in encoder counts.

If the factor group settings are not used, i.e. all values reported are in internal units (default), both Object 6064h: Position
actual value and Object 6062h: Position demand value value will provide correct values.

5.8 Drive info objects

5.8.1 Object 1000h: Device Type

The object contains information about drive type and its functionality. The 32-bit value contains 2 components of 16-
bits: the 16 LSB describe the CiA standard that is followed.

Object description:

Index 1000h

Name Device type

Object code VAR

Data type UNSIGNED32

Value description:

Access RO

PDO mapping NO

Value range UNSIGNED32

Default value 60192h for iPOS family

© Technosoft 2024 87 CANopen Programming

5.8.2 Object 6502h: Supported drive modes

This object gives an overview of the operating modes supported on the Technosoft drives. Each bit from the object has
assigned an operating mode. If the bit is set then the drive supports the associated operating mode.

Object description:

Index 6502h

Name Supported drive modes

Object code VAR

Data type UNSIGNED32

Entry description:

Access RO

PDO mapping Possible

Value range UNSIGNED32

Default value 001F0065h for iPOS family

The modes of operation supported by the Technosoft drives, and their corresponding bits, are the following:

Data description:

 MSB LSB

0 0 x … x 0 0 1 1 0 0 1 0 1

Manufacturer specific rsvd ip hm rsvd tq pv vl pp

31 21 20 … 16 15 ... 7 6 5 4 3 2 1 0

Data description – manufacturer specific:

Bit Description

31 … 21 Reserved

20 External Reference Torque Mode

19 External Reference Speed Mode

18 External Reference Position Mode

17 Electronic Gearing Position Mode

16 Electronic Camming Position Mode

5.8.3 Object 1008h: Manufacturer Device Name

The object contains the manufacturer device name in ASCII form, maximum 15 characters.

Object description:

Index 1008h

Name Manufacturer device name

Object code VAR

Data type Visible String

Entry description:

Access Const

PDO mapping No

Value range No

Default value iPOS

5.8.4 Object 100Ah: Manufacturer Software Version

The object contains the firmware version programmed on the drive in ASCII form with the maximum length of 15
characters.

Object description:

Index 100Ah

Name Manufacturer software version

Object code VAR

Data type Visible String

Entry description:

Access Const

PDO mapping No

Value range No

Default value Product dependent

© Technosoft 2024 88 CANopen Programming

5.8.5 Object 2060h: Software version of a TML application

By inspecting this object, the user can find out the software version of the TML application (setup plus eventually cam
tables) that is stored in the EEPROM memory of the drive. The object shows a string of the first 4 elements written in
the TML application field, grouped in a 32-bit variable. If more character are written, only the first 4 will be displayed.
Each byte represents an ASCII character.

Object description:

Index 2060h

Name Software version of TML application

Object code VAR

Data type UNSIGNED32

Entry description:

Access RO

PDO mapping No

Units -

Value range No

Default value No

Example:
If object 2060h contains the value 0x322E3156, then the software version of the TML application is read as:
0x56 – ASCII code of letter V
0x31 – ASCII code of number 1
0x2E – ASCII code of character . (point)
0x32 – ASCII code of number 2
Therefore, the version is V1.2.

5.8.6 Object 1018h: Identity Object

This object provides general information about the device.
❑ Sub-index 01h shows the unique Vendor ID allocated to Technosoft (1A3h).
❑ Sub-index 02h contains the Technosoft drive product ID. It can be found physically on the drive label or using

the EEPROM programmer tool found under the Utilities tab. If the Technosoft product ID is P027.214.E121,
sub-index 02h will be read as the number 27214121 in decimal.

❑ Sub-index 03h shows the Revision number.
❑ Sub-index 04h displays the drive's serial number. This serial number can be retrieved using the EEPROM

Programmer tool or viewed in the bottom-right corner of EasyMotion Studio II when the drive is connected
online.

For example, the serial number 0x4C451158 is interpreted as follows:

• 0x4C corresponds to the ASCII character "L"

• 0x45 corresponds to the ASCII character "E"

• 0x1158 represents the numerical value 1158
Thus, the full serial number is LE1158.

Object description:

Index 1018h

Name Identity Object

Object code RECORD

Data type Identity

© Technosoft 2024 89 CANopen Programming

Entry description:

Sub-index 00h

Description Number of entries

Access RO

PDO mapping No

Value range 1..4

Default value 4

Sub-index 01h

Description Vendor ID

Access RO

PDO mapping No

Value range UNSIGNED32

Default value 000001A3h

Sub-index 02h

Description Product Code

Access RO

PDO mapping No

Value range UNSIGNED32

Default value Product dependent

Sub-index 03h

Description Revision number

Access RO

PDO mapping No

Value range UNSIGNED32

Default value 0x30313030 (ASCII 0100)

Sub-index 04h

Description Serial number

Access RO

PDO mapping No

Value range UNSIGNED32

Default value Unique number

5.9 Miscellaneous Objects

5.9.1 Object 2025h: Stepper current in open-loop operation

In this object, one can set the level of the current to be applied when controlling a stepper motor in open loop operation
at runtime.

Object description:

Index 2025h

Name Stepper current in open-loop operation

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Possible

Units IU

Value range -32768 … 32767

Default value No

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the commanded value in object 2025h.

5.9.2 Object 2026h: Stand-by current for stepper in open-loop operation

In this object, one can set the level of the current to be applied when controlling a stepper motor in open loop operation
in stand-by.

© Technosoft 2024 90 CANopen Programming

Object description:

Index 2026h

Name Stand-by current for stepper in open-loop operation

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Possible

Units CU

Value range -32768 … 32767

Default value No

5.9.3 Object 2027h: Timeout for stepper stand-by current

In this object, one can set the amount of time after the value set in Object 2026h: Stand-by current for stepper in open-
loop operation will activate as the reference for the current applied to the motor after the reference has reached the
target value.

Object description:

Index 2027h

Name Timeout for stepper stand-by current

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Units TU

Value range 0 … 65535

Default value No

5.9.4 Object 2075h: Position triggers

This object is used in order to define a set of four position values whose proximity will be signaled through bits 17-20 of
object Object 1002h: Manufacturer Status Register. If the position actual value is over a certain value set as a position
trigger, then the corresponding bit in Manufacturer Status Register will be set.

Object description:

Index 2075h

Name Position triggers

Object code ARRAY

Data type INTEGER32

Entry description:

Sub-index 00h

Description Number of sub-indexes

Access RO

PDO mapping No

Default value 4

Sub-index 01h – 04h

Description Position trigger 1 - 4

Access RW

PDO mapping Possible

Value range INTEGER32

Default value No

5.9.5 Object 2085h: Position triggered outputs

The object controls the digital outputs 0, 1 and 5 in concordance with the position triggers 1, 2 and 4 status from the
Object 1002h: Manufacturer Status Register.

Object description:

Index 2085h

Name Position triggered outputs

Object code VAR

Data type UNSIGNED16

© Technosoft 2024 91 CANopen Programming

Entry description:

Access RW

PDO mapping No

Units -

Value range 0 … 65535

Default value No

The Position triggered outputs object has the following bit assignment:

Table 5.18 – Bit Assignment in Position triggered outputs

Bit Value Meaning

12-15 0 Reserved.

11

0
OUT5 = 1 when Position trigger 4 = 0
OUT5 = 0 when Position trigger 4 = 1

1
OUT5 = 0 when Position trigger 4 = 0
OUT5 = 1 when Position trigger 4 = 1

10 0 Reserved.

9

0
OUT1 = 1 when Position trigger 2 = 0
OUT1 = 0 when Position trigger 2 = 1

1
OUT1 = 0 when Position trigger 2 = 0

OUT1 = 1 when Position trigger 2 = 1

8

0
OUT0 = 1 when Position trigger 1 = 0
OUT0 = 0 when Position trigger 1 = 1

1
OUT0 = 0 when Position trigger 1 = 0
OUT0 = 1 when Position trigger 1 = 1

4-7 0 Reserved

3 6F

1
1 Enable position trigger 4 control of OUT5

0 Disable position trigger 4 control of OUT5

2 0 Reserved

1
1 Enable position trigger 2 control of OUT1

0 Disable position trigger 2 control of OUT1

0
1 Enable position trigger 1 control of OUT0

0 Disable position trigger 1 control of OUT0

Note: Some drives may not have some outputs available. The object will control only the ones that exist.

5.9.6 Object 2076h: Save current configuration

This object is used in order to enable saving the current configuration of the operating parameters of the drive. These
parameters are the ones that are set when doing the setup of the drive. The purpose of this object is to be able to save
the new values of these parameters in order to be re-initialized at subsequent system re-starts.

Writing any value in this object will trigger the save in the non-volatile EEPROM memory of the current drive operating
parameters.

Object description:

Index 2076h

Name Save current configuration

Object code VAR

Data type UNSIGNED16

Entry description:

Access WO

PDO mapping No

Value range UNSIGNED16

Default value -

5.9.7 Object 208Bh7F

2: Sin AD signal from Sin/Cos encoder

The object contains the actual value of the analogue sine signal of a Sin/Cos encoder.

Object description:

Index 208Bh

Name Sin AD signal from Sin/Cos encoder

Object code VAR

Data type INTEGER16

1 Some outputs may not be available on all drives.
2 Object 208Bh is available only on firmware version F514x and FA01x

© Technosoft 2024 92 CANopen Programming

Entry description:

Access RO

PDO mapping Possible

Units -

Value range -32768 … 32767

Default value No

5.9.8 Object 208Ch8F

1: Cos AD signal from Sin/Cos encoder

The object contains the actual value of the analogue cosine signal of a Sin/Cos encoder.

Object description:

Index 208Ch

Name Cos AD signal from Sin/Cos encoder

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping Possible

Units -

Value range -32768 … 32767

Default value No

5.9.9 Object 208Eh: Auxiliary Settings Register

This object is used as a configuration register that enables various advanced control options.

Object description:

Index 208Eh

Name Auxiliary Settings Register

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0x0100

Table 5.19 – Bit Assignment in Auxiliary Settings Register

Bit Value Description

9-15 0 Reserved.

8
0 Set interpolation mode compatible with PT and PVT (legacy)

1 Set interpolation mode (when 6060=7) as described in the CiA402 standard

7 0 Reserved

6
0 Leave position controller history unchanged

1 Reset position controller history

5
0 Leave speed controller history unchanged

1 Reset speed controller history

4
0 Leave current controller history unchanged

1 Reset current controller history

3
0 When 6040h bit 14 = 1, at the next update9F

2, the Target Speed Starting Value is the Actual Speed

1 When 6040h bit 14 = 1, at the next update, the Target Speed Starting Value is zero.

0-2 0 Reserved.

5.9.10 Object 210Bh: Auxiliary Settings Register2

This object is used as a configuration register that enables various advanced control options. The bits in this object are
linked to the internal register ASR2.

Object description:

1 Object 208Ch is available only on firmware version F514x and FA01x

2 update can mean a 0 to 1 transition of bit4 in Controlword or setting a new value into object 60FFh while in velocity
mode

© Technosoft 2024 93 CANopen Programming

Index 210Bh

Name Auxiliary Settings Register2

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0x0000

Table 5.20 – Bit Assignment in Auxiliary Settings Register2

Bit Value Description

13-15 0 Reserved.

12
0

Set actual position to the value of the homing offset 607Ch at the end of the
homing procedure

1
After finishing a homing procedure, do not reset the actual position.
Homing ends keeping position on home switch.

0-11 0 Reserved

5.9.11 Object 20A0h: Load Position and Speed monitoring10F

1

This object shows the position and speed of the load sensor, when its functionality is set as only monitoring (not used
in position control). The load sensor functionality can be selected using the Feedback section during the setup part. The
object is not affected by Factor Group settings – it will always return values in IU.

Object description:

Index 20A0h

Name Load Position and Speed monitoring

Object code VAR

Data type INTEGER32

Entry description:

Sub-index 00h

Description Number of sub-indexes

Access RO

PDO mapping Yes

Default value 3

Sub-index 01h

Description Reserved

Access RO

PDO mapping -

Default value -

Sub-index 02h

Description Load Position Monitor

Access RO

PDO mapping Yes

Default value -

Sub-index 03h

Description Load Speed Monitor

Access RO

PDO mapping Yes

Default value -

5.9.12 Object 2100h: Number of steps per revolution

This object shows the number of motor steps per revolution in case a stepper motor is used. This number is defined
automatically in Setup part when configuring the motor data, under Main Parameters section.

Object description:

Index 2100h

Name Number of steps per revolution

Object code VAR

Data type INTEGER16

1 Object 20A0h is available starting with firmware version F514K or newer and FA01x.

© Technosoft 2024 94 CANopen Programming

Entry description:

Access RO

PDO mapping Yes

Value range INTEGER16

Default value -

5.9.13 Object 2101h: Number of microsteps per step

This object shows the number of motor microsteps per step in case a stepper open loop configuration is used. This
number is defined automatically when configuring the Application settings, under Microstepping section.

Object description:

Index 2101h

Name Number of microsteps per step

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping Yes

Value range INTEGER16

Default value -

5.9.14 Object 2103h: Number of encoder counts per revolution

This object shows the number of encoder counts for one full motor rotation.

For example, if this object indicates 4000 and a 4000IU position command is given, the motor will rotate 1 full mechanical
rotation.

Remark: this object will not indicate a correct number in case a Brushed DC motor is used.

Object description:

Index 2103h

Name Number of encoder counts per revolution

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Yes

Value range INTEGER32

Default value -

5.9.15 Object 2091h11F

1: Lock EEPROM

This object can be used to lock/unlock the EEPROM data from being written. By reading it, it also acts as a status.

Once TML or Setup data is written into the drive memory, it can be protected from being overwritten by using this object.

If the EEPROM memory is already locked, it can be unlocked using this object in order to write new setup data.

Object description:

Index 2091h

Name Lock EEPROM

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping NO

Value range UNSIGNED8

Default value 0

Table 5.21 – Bit Assignment in Lock EEPROM

Bit Value Meaning

2-7 0 Reserved.

0
0 EEPROM is unlocked.

1 EEPROM is locked.

1 Object 2091h is available only on firmware versions F514E or newer and FA01x

© Technosoft 2024 95 CANopen Programming

5.9.16 Object 2092h: User Variables12F

1

This object contains 4x sub-indexes, each a 32bit User Variable. These variables are directly linked to parameters
present in the template and their values can be saved using Object 2076h: Save current configuration.

The variables are named: UserVar1, UserVar2, UserVar3 and UserVar4. They are linked to sub-index 1 to 4 of this
object.

Object description:

Index 2092h

Name User Variables

Object code ARRAY

Data type ULONG32

Entry description:

Sub-index 00h

Description Number of sub-indexes

Access RO

PDO mapping No

Default value 4

Sub-index 01h – 04h

Description UserVar1 - 4

Access RW

PDO mapping Possible

Value range ULONG32

Default value No

6 Factor group

The iPOS and Micro drives family offers the possibility to interchange physical dimensions and sizes into the device
internal units. This chapter describes the factors that are necessary to do the interchanges.
The factors defined in Factor Group set up a relationship between device internal units and physical units.

The factor group settings currently implemented are complying with:
- Factor group objects - CiA-402-2 and later versions – starting with firmware version F514K / FA01x
- Factor group objects - CiA-402 (obsolete)– for other firmware versions

6.1 Factor group objects - CiA-402 (obsolete)

The actual factors used for scaling are the Object 6093h: Position factor, the Object 6094h: Velocity encoder factor, the
Object 6097h: Acceleration factor and the Object 2071h: Time factor. Writing a non-zero value into the respective
dimension index objects validates these factors. The notation index objects are used for status only and can be set by
the user depending on each user-defined value for the factors.
Because the drives work with Fixed 32 bit numbers (not floating point), some calculation round off errors might occur
when using objects 6093h, 6094h, 6097h and 2071h. If the CANopen master supports handling the scaling calculations
on its side, it is recommended to use them instead of using the “Factor” scaling objects.

6.1.1 Object 607Eh: Polarity

This object is used to multiply by 1 or -1 position and velocity objects. The object applies only to position profile and
velocity profile modes of operation.

Object description:

Index 607Eh

Name Polarity

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Possible

Value range 0..256

Default value 0

The Polarity object has the following bit assignment:

1 Object 2092h is available only on firmware versions F514E or newer and FA01x

© Technosoft 2024 96 CANopen Programming

Table 6.1 – Bit Assignment in Polarity object

Bit Bit name Value Meaning

7
Position
polarity

0 Multiply by 1 the values of objects 607Ah, 6062h and 6064h

1 Multiply by -1 the values of objects 607Ah, 6062h and 6064h

6
Velocity
polarity

0 Multiply by 1 the values of objects 60FFh, 606Bh and 606Ch

1 Multiply by -1 the values of objects 60FFh, 606Bh and 606Ch

5-0 reserved 0 Reserved

The default value for this object can be changed by editing the parameter “POLARITY” found in parameters.xml of the
project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

6.1.2 Object 6089h: Position notation index

The position notation index is used to define the position into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom position scaling is used, set it to 1 instead of 0.
For position scaling, use Object 6093h: Position factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 6089h

Name Position notation index

Object code VAR

Data type INTEGER8

Entry description:

Access RW

PDO mapping Possible

Value range -128 … 127

Default value 0

6.1.3 Object 608Ah: Position dimension index

The position dimension index is used to define the position into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom position scaling is used, set it to 1 instead of 0.
For position scaling, use Object 6093h: Position factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 608Ah

Name Position dimension index

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Possible

Value range 0 … 255

Default value 0

6.1.4 Object 608Bh: Velocity notation index

The velocity notation index is used to define the velocity into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom velocity scaling is used, set it to 1 instead of 0.
For velocity scaling, use Object 6094h: Velocity encoder factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 608Bh

Name Velocity notation index

Object code VAR

Data type INTEGER8

© Technosoft 2024 97 CANopen Programming

Entry description:

Access RW

PDO mapping Possible

Value range -128 … 127

Default value 0

6.1.5 Object 608Ch: Velocity dimension index

The velocity dimension index is used to define the velocity into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom velocity scaling is used, set it to 1 instead of 0.
For velocity scaling, use Object 6094h: Velocity encoder factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 608Ch

Name Velocity dimension index

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Possible

Value range 0 … 255

Default value 0

6.1.6 Object 608Dh: Acceleration notation index

The acceleration notation index is used to define the acceleration into [SI] units. Its purpose if purely informative for
CANopen masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the
dimension and notion index objects have been declared as obsolete. In case a custom acceleration scaling is used, set
it to 1 instead of 0. For acceleration scaling, use Object 6097h: Acceleration factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 608Dh

Name Acceleration notation index

Object code VAR

Data type INTEGER8

Entry description:

Access RW

PDO mapping Possible

Value range -128 … 127

Default value 0

6.1.7 Object 608Eh: Acceleration dimension index

The acceleration dimension index is used to define the acceleration into [SI] units. Its purpose if purely informative for
CANopen masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the
dimension and notion index objects have been declared as obsolete. In case a custom acceleration scaling is used, set
it to 1 instead of 0. For acceleration scaling, use Object 6097h: Acceleration factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 608Eh

Name Acceleration dimension index

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Possible

Value range 0 … 255

Default value 0

© Technosoft 2024 98 CANopen Programming

6.1.8 Object 206Fh: Time notation index

The time dimension index is used to define the time into [SI] units. Its purpose if purely informative for CANopen masters
which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and notion
index objects have been declared as obsolete. In case a custom time scaling is used, set it to 1 instead of 0. For time
scaling, use Object 2071h: Time factor.

Object description:

Index 206Fh

Name Time notation index

Object code VAR

Data type INTEGER8

Entry description:

Access RW

PDO mapping Possible

Value range -128 … 127

Default value 0

6.1.9 Object 2070h: Time dimension index

The time dimension index is used to define the time into [SI] units. Its purpose if purely informative for CANopen masters
which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and notion
index objects have been declared as obsolete. In case a custom time scaling is used, set it to 1 instead of 0. For time
scaling, use Object 2071h: Time factor.

Object description:

Index 2070h

Name Time dimension index

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Possible

Value range 0 … 255

Default value 0

6.1.10 Object 6093h: Position factor

The position factor converts the drive internal position units (increments) to the desired position (in position units) into
the internal format (in increments) for the drive to use.
Writing any non-zero value into the respective dimension and notation index objects activates this object. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝐼𝑈] = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑈𝑠𝑒𝑟𝑈𝑛𝑖𝑡𝑠] × 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟. 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟. 𝐷𝑖𝑣𝑖𝑠𝑜𝑟

It scales the following objects:
Object 6064h: Position actual value; Object 6062h: Position demand value; Object 607Ah: Target position; Object
6067h: Position window; Object 6068h: Position window time; Object 60F4h: Following error actual value

Object description:

Index 6093h

Name Position factor

Object code ARRAY

Number of elements 2

Data type UNSIGNED32

Entry description:

Sub-index 01h

Description Numerator

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

Sub-index 02h

Description Divisor

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

© Technosoft 2024 99 CANopen Programming

6.1.10.1 Setting the numerator and divisor in a factor group object. Example

Important: when small values are used, errors may occur due to the internal calculation round off errors. In order to
avoid this, use larger values giving the same desired ratio Example = 6093.1 = 0x20000 and 6093.2 = 0x10000. This
will mean a factor of 2:1. In case 6093.1 = 0x2 and 0x6093.2 = 0x1, the position would not be computed correctly. As a
general rule, the bigger the numerator and denominator values are, the more precise is the fraction calculation.
Example
The desired user position units are radians. The drive internal position units are encoder counts. The load is connected
directly to the motor shaft and the motor has a 500-lines incremental encoder.

The conversion between user and internal units is: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑟𝑎𝑑] × (4 × 500)(2 × 𝜋) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑈𝑠𝑒𝑟𝑈𝑛𝑖𝑡𝑠]
Hence (6093.2/6093.1) = 2 * pi / (4 x 500) = 0.0031415926535897932384626433832795…
How to set the 2 numbers? Being a number less than 1, the denominator (6093.1) is bigger than the numerator (6093.2).
Hence set the denominator to the largest integer value for 32 bits i.e. 0xFFFF FFFF = 4294967295 and the numerator
to
0.0031415926535897932384626433832795 x 4294967295 = 13493037.701380426305009189410434, rounded to
integer i.e. = 13493038.

In conclusion: 6093.1 = 4294967295 (0xFFFF FFFF) and 6093.2 = 13493038 i.e. user position [rad] * 4294967295 /
13493038 = internal position [counts]

6.1.11 Object 6094h: Velocity encoder factor

The velocity encoder factor converts the desired velocity (in velocity units) into the internal format (in increments) for the
drive to use.

Writing any non-zero value into the respective dimension and notation index objects activates this object.

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦[𝐼𝑈] = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦[𝑈𝑠𝑒𝑟𝑈𝑛𝑖𝑡𝑠] × 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟. 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟. 𝐷𝑖𝑣𝑖𝑠𝑜𝑟

It scales the following objects:

Object 606Ch: Velocity actual value; Object 606Bh: Velocity demand value; Object 606Fh: Velocity threshold; Object
60FFh: Target velocity; Object 60F8h: Max slippage; Object 6081h: Profile velocity

To configure the object with optimal values, see Setting the numerator and divisor in a factor group object. Example.

Object description:

Index 6094h

Name Velocity encoder factor

Object code ARRAY

Number of elements 2

Data type UNSIGNED32

Entry description:

Sub-index 01h

Description Numerator

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

Sub-index 02h

Description Divisor

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

6.1.12 Object 6097h: Acceleration factor

The acceleration factor converts the velocity (in acceleration units/sec2) into the internal format (in increments/sampling2)
for the drive to use.

Writing any non-zero value into the respective dimension and notation index objects activates this object. 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝐼𝑈] = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑈𝑠𝑒𝑟𝑈𝑛𝑖𝑡𝑠] × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟. 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟. 𝐷𝑖𝑣𝑖𝑠𝑜𝑟

© Technosoft 2024 100 CANopen Programming

It scales the following objects:

Object 6083h: Profile acceleration; Object 6085h: Quick stop deceleration

To configure the object with optimal values, see Setting the numerator and divisor in a factor group object. Example.

Object description:

Index 6097h

Name Acceleration factor

Object code ARRAY

Number of elements 2

Data type UNSIGNED32

Entry description:

Sub-index 01h

Description Numerator

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

Sub-index 02h

Description Divisor

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

6.1.13 Object 2071h: Time factor

The time factor converts the desired time values (in time units) into the internal format (in speed / position loop
samplings) for the drive to use.
Writing any non-zero value into the respective dimension and notation index objects activates this object. 𝑇𝑖𝑚𝑒[𝐼𝑈] = 𝑇𝑖𝑚𝑒[𝑈𝑠𝑒𝑟𝑈𝑛𝑖𝑡𝑠] × 𝑇𝑖𝑚𝑒𝐹𝑎𝑐𝑡𝑜𝑟. 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟𝑇𝑖𝑚𝑒𝐹𝑎𝑐𝑡𝑜𝑟. 𝐷𝑖𝑣𝑖𝑠𝑜𝑟

It scales the following objects:
Object 6066h: Following error time out; Object 6068h: Position window time; Object 2023h: Jerk time; Object

2005h: Max slippage time out; Object 2051h: Over-current time out
To configure the object with optimal values, see Setting the numerator and divisor in a factor group object. Example.

Object description:

Index 2071h

Name Time factor

Object code ARRAY

Number of elements 2

Data type UNSIGNED32

Entry description:

Sub-index 01h

Description Numerator

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

Sub-index 02h

Description Divisor

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

© Technosoft 2024 101 CANopen Programming

6.2 Factor group objects - CiA-402-2

The user-defined units are translated to internal units (IU) by the factor / scaling objects: Object 6093h: Position Factor
/ Position Scaling, Object 6094h: Velocity encoder factor, Object 210Fh: Acceleration encoder factor and Object 2110h:
Jerk encoder factor. For the calculation of the respective values (and their physical units) specific formulas presented
in the chapter are used.

Remark: This feature is available starting with firmware versions F514K or newer and FA01x.

All units are specified using a 32-bit notation index1 that have no influence over any scaling. Their purpose is only to
define an [SI] unit name (rpm, rad, deg, etc) and their exponent (prefix). The SI unit objects are: Object 60A8h: SI unit
position, Object 60A9h: SI unit velocity, Object 60AAh: SI unit acceleration and Object 60ABh: SI unit jerk.

Table 6.2 – SI Objects Structure

MSB LSB

Prefix SI numerator SI denominator Profile-specific

31 … 24 23 … 16 15 ... 8 7 ... 0

If the SI base unit is used, the bit field SI numerator contains the notation index of the base unit. The SI denominator is
not used and its bit field is equal to 1. If SI derived units are used, the SI numerator bit field contains the notation index
corresponding to the numerator of the unit and the SI denominator contains the notation index corresponding to the
denominator of the unit. Additionally, the parameter definition may contain notation index for profile specific units.

Listed in the following table are the possible exponents (prefixes) and their values:

Table 6.3 – Prefix Representation1

Prefix Factor Symbol Notation Index

kilo 103 k 03

- 100 - 00

milli 10-3 m FD

micro 10-6 μ FA

Listed in the following table all default units for the SI numerator field:

Table 6.4 – Notation Index for SI Numerator 1

Name Symbol Notation Index Description

Internal Unit IU(inc) B5
Encoder counts. Dependent on the used sensor
configuration. It’s value can be found also in object 2103h:
Number of encoder counts per revolution.

Step IU(step) AC
Available only for step motors. The value can be computed
as object 2100h: Number of steps per revolution multiplied
by object 2101h: Number of microsteps per step.

Radian rad 10 Radian

Degree deg 41 Degrees

Mechanical
Revolution

rot B4 Revolution

Meter m 01
Available only if transmission type is rotary to linear or
linear to linear.

Dimensionless - 00 Dimensionless length unit

Listed in the following table are all default units for the SI denominator:

Table 6.5 – Notation Index for SI Denominator1

Name Symbol Notation Index

Second s 03

Minute min 47

Square Second s2 57

Cubic second s3 A0

1 Specified in CiA-303-2 v.1.5.0/27.04.2015 Recommendation – “Part 2: Representation of SI units and prefixes”

© Technosoft 2024 102 CANopen Programming

If needed, the full list of notation indexes is specified in CiA-303-2 v.1.5.0/27.04.2015 Recommendation – “Part 2:
Representation of SI units and prefixes”.

6.2.1 Object 60A8h: SI unit position

This object indicates the user-defined position units. The object structure is defined in table Table 6.2 – SI Objects
Structure. The profile specific field (bit 0 to bit 7) of this object is reserved (00h).

Object description:

Index 60A8h

Name SI unit position

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 0x00B50100

Example:

- If the object is configured in deg:

MSB LSB

Prefix SI numerator SI denominator Profile-specific

00h (means 100) 41h(means deg) 01h(default) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

- If the object is configured in mm:

MSB LSB

Prefix SI numerator SI denominator Profile-specific

FDh (means 10-3) 01h(means m) 01h(default) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

6.2.2 Object 6093h: Position Factor / Position Scaling

The object converts all values of length of the application from position internal units (IU) to position units (PU). Its value
takes into consideration three objects: Object 608Fh: Position Encoder Resolution, Object 6091h: Gear Ratio and Object
6092h: Feed Constant.

The calculation of the position factor is done using the following equation:
 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠 (𝐼𝑈) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 (𝑃𝑈) × 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 𝐹𝑒𝑒𝑑 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

The Position Units are computed automatically by EasyMotion Studio II for each mechanical setup (rot-rot / rot-lin / lin-
lin transmission) and each position sensor configuration (type, on motor or on load).

Object description:

Index 6093h

Name Position Factor / Position Scaling

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Position internal units (IU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

© Technosoft 2024 103 CANopen Programming

Sub-index 2

Description Position units (PU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.3 Object 608Fh: Position Encoder Resolution

The object indicates the configured encoder increments and the number of motor revolutions. The position encoder
resolution is calculated as follows: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑀𝑜𝑡𝑜𝑟 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
Object description:

Index 608Fh

Name Position encoder resolution

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Encoder increments

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x000007D0 (2000 IU)

Sub-index 2

Description Motor rotation

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.4 Object 6091h: Gear Ratio

The object indicates the configured number of load rotations corresponding to the number of motor rotations. The gear
ratio is calculated as follows: 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 = 𝑀𝑜𝑡𝑜𝑟 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑎𝑑 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
In EasyMotion Studio II, this object is automatically configured in the Mechanical Configuration section:

Object description:

Index 6091h

Name Gear Ratio

Object code ARRAY

Data type UNSIGNED32

© Technosoft 2024 104 CANopen Programming

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Motor rotation

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Load rotation

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.5 Object 6092h: Feed Constant

The object indicates the measurement distance per one rotation of the driving shaft of the gearbox. The feed constant
is calculated as follows: 𝐹𝑒𝑒𝑑 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐹𝑒𝑒𝑑 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑆ℎ𝑎𝑓𝑡 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

The feed is given in user-defined position units, and the driving shaft revolutions value is dimensionless.

Object description:

Index 6092h

Name Feed Constant

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Feed

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Shaft Rotations

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.6 Object 60A9h: SI unit velocity

This object indicates the user-defined velocity units. The object structure is defined in Table 6.2 – SI Objects Structure.
The profile specific field (bit 0 to bit 7) of this object is reserved (00h).

Object description:

© Technosoft 2024 105 CANopen Programming

Index 60A9h

Name SI unit velocity

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 0x00000000

Example:

- If the object is configured in rpm:

MSB LSB

Prefix SI numerator SI denominator Profile-specific

00h (means 100) B4h(means rot) 47h(means min) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

- If the object is configured in mm/s:

MSB LSB

Prefix SI numerator SI denominator Profile-specific

FDh (means 10-3) 01h(means m) 03h(means s) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

6.2.7 Object 6094h: Velocity encoder factor

The object converts all values of speed of the application from velocity internal units (IU) to velocity units (VU). Its value
takes into consideration two objects: Object 6093h: Position Factor / Position Scaling and Object 6096h: Velocity Factor.

The calculation of the position factor is done using the following equation:
 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠 (𝐼𝑈) = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑈𝑛𝑖𝑡𝑠 (𝑉𝑈) × 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑇 × 216 𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑠𝑙𝑜𝑤 𝑙𝑜𝑜𝑝 𝑝𝑒𝑟𝑖𝑜𝑑

The Velocity Units are computed automatically by EasyMotion Studio II for each mechanical setup (rot-rot / rot-lin / lin-
lin transmission), position sensor configuration (type, on motor or on load) and slow loop period.

Object description:

Index 6094h

Name Velocity encoder factor

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Velocity internal units (IU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Velocity units (VU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

© Technosoft 2024 106 CANopen Programming

6.2.8 Object 6096h: Velocity Factor

The object converts PU (position units) per second into VU (velocity units). The calculation of the velocity factor is done
using the following equation:

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑈𝑛𝑖𝑡𝑠 (𝑉𝑈)𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 (𝑃𝑈)𝑠

For example, if the user defined position unit is radian (rad) and the user defined velocity unit is rpm, the velocity factor
will be 60/2/π. If the user defined position unit is radian (rad) and the user defined velocity unit is rad/s, the velocity
factor will be 1.

Object description:

Index 6096h

Name Velocity Factor

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Velocity units (VU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Position units (PU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.9 Object 60AAh: SI unit acceleration

This object indicates the user-defined acceleration units. The object structure is defined in Table 6.2 – SI Objects
Structure. The profile specific field (bit 0 to bit 7) of this object is reserved (00h).

Object description:

Index 60AAh

Name SI unit acceleration

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 0x00000000

Example:

- If the object is configured in deg/s2:
MSB LSB

Prefix SI numerator SI denominator Profile-specific

00h (means 100) 41h(means rad) 57h(means s2) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

- If the object is configured in krad/s2:

© Technosoft 2024 107 CANopen Programming

MSB LSB

Prefix SI numerator SI denominator Profile-specific

03h (means 103) 10h(means rad) 57h(means s2) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

6.2.10 Object 210Fh: Acceleration encoder factor

The object converts all values of acceleration of the application from acceleration internal units (IU) to acceleration units
(AU). Its value takes into consideration two objects: Object 6094h: Velocity encoder factor and Object 6097h:
Acceleration Factor.

The calculation of the position factor is done using the following equation: 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠 (𝐼𝑈) = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 (𝐴𝑈) × 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑠𝑙𝑜𝑤 𝑙𝑜𝑜𝑝 𝑝𝑒𝑟𝑖𝑜𝑑

The Acceleration Units are computed automatically by EasyMotion Studio II for each mechanical setup (rot-rot / rot-lin /
lin-lin transmission), position sensor configuration (type, on motor or on load) and slow loop period.

Object description:

Index 210Fh

Name Acceleration encoder factor

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Acceleration internal units (IU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Acceleration units (AU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.11 Object 6097h: Acceleration Factor

The object converts VU (velocity units) per second into AU (acceleration units). The calculation of the acceleration factor
is done using the following equation:

 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 (𝐴𝑈)𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑈𝑛𝑖𝑡𝑠 (𝑉𝑈)𝑠
For example, if the user defined velocity unit is rad/s and the user defined acceleration unit is krad/s2, the acceleration
factor will be 0.001. If the user defined velocity unit is rad/s and the user defined acceleration unit is rad/s2, the
acceleration factor will be 1.

Object description:

Index 6097h

Name Acceleration Factor

Object code ARRAY

Data type UNSIGNED32

© Technosoft 2024 108 CANopen Programming

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Acceleration units (AU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Velocity units (VU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.12 Object 60ABh: SI unit jerk

This object indicates the user-defined jerk units. The object structure is defined in Table 6.2 – SI Objects Structure. The
profile specific field (bit 0 to bit 7) of this object is reserved (00h).

Object description:

Index 60ABh

Name SI unit jerk

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 0x00000000

Example:

- If the object is configured in deg/s3:
MSB LSB

Prefix SI numerator SI denominator Profile-specific

00h (means 100) 41h(means rad) A0h(means s3) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

- If the object is configured in krad/s3:
MSB LSB

Prefix SI numerator SI denominator Profile-specific

03h (means 103) 10h(means rad) A0h(means s3) 00h(default)

31 … 24 23 … 16 15 ... 8 7 ... 0

6.2.13 Object 2110h: Jerk encoder factor

The object converts all values of jerk of the application from jerk internal units (IU) to jerk units (JU). Its value takes into
consideration two objects: Object 210Fh: Acceleration encoder factor and Object 60A2h: Jerk Factor.

The calculation of the position factor is done using the following equation: 𝐽𝑒𝑟𝑘 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠 (𝐼𝑈) = 𝐽𝑒𝑟𝑘 𝑈𝑛𝑖𝑡𝑠 (𝐽𝑈) × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 𝐽𝑒𝑟𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑠𝑙𝑜𝑤 𝑙𝑜𝑜𝑝 𝑝𝑒𝑟𝑖𝑜𝑑

The Jerk Units are computed automatically by EasyMotion Studio II for each mechanical setup (rot-rot / rot-lin / lin-lin
transmission), position sensor configuration (type, on motor or on load) and slow loop period.

© Technosoft 2024 109 CANopen Programming

Object description:

Index 2110h

Name Jerk encoder factor

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Jerk internal units (IU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Jerk units (JU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

6.2.14 Object 60A2h: Jerk Factor

The object converts AU (acceleration units) per second into JU (jerk units). The calculation of the jerk factor is done
using the following equation: 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐽𝑒𝑟𝑘 𝑈𝑛𝑖𝑡𝑠 (𝐽𝑈)𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 (𝐴𝑈)𝑠
For example, if the user defined acceleration unit is rad/s2 and the user defined jerk unit is krad/s3, the jerk factor will be
0.001. If the user defined acceleration unit is rad/s2 and the user defined jerk unit is rad/s3, the jerk factor will be 1.

Object description:

Index 60A2h

Name Jerk Factor

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Jerk Units (JU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

Sub-index 2

Description Acceleration Units (AU)

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00000001

© Technosoft 2024 110 CANopen Programming

7 Homing Mode

7.1 Overview

Homing is the method by which a drive seeks the home position. There are various methods to achieve this position
using the four available sources for the homing signal: limit switches (negative and positive), home switch (IN0) and
encoder index pulse.

Remark: on a Micro, iPOS drive or iMOT intelligent motor, the “home switch” is always the digital input IN0.

A homing move is started by setting bit 4 of the Object 6040h: Controlword. The results of a homing operation can be
accessed in the Object 6041h: Statusword.

After the physical home position is found, the drive actual position (Object 6064h: Position actual value or internal
variable APOS) will be set with the value of Object 607Ch: Home offset.

A homing mode is chosen by writing a value to homing method (object 6098h) which will clearly establish:

1. the used homing signal (positive limit switch, negative limit switch, home switch or index pulse)

2. the initial direction of motion

3. the position of the index pulse (if used).

The user can specify the home method, the home offset, two homing speeds and the acceleration.

The home offset (Object 607Ch: Home offset) is the difference between the zero position for the application and the
machine home position. During homing, the home position is found. Once the homing is completed, the zero position is
offset from the home position by adding the home_offset to the home position. This is illustrated in the following diagram.

Figure 7.1.1. Home Offset

In other words, after the home position has been found, the drive will set the actual position (object 6064h) with the value
found in object 607Ch.

There are two homing speeds: a fast speed (which is used for the initial motion to find the home switch), and a slow
speed (which is used after the home switch transition, when the motion is reversed).

The homing acceleration establishes the acceleration to be used for all accelerations and decelerations with the
standard homing modes.

The homing method descriptions in this document are based on those in the Profile for Drives and Motion Control
(CiA402 or IEC61800 Standard).

The figure below explains the homing method 1 diagram in detail. The other homing method diagrams are similar and
the explanation below applied to all of them.

The colors black and grey represent the original homing diagram as explained in the CiA 402 standard.

The green color represents the explanation for the various elements in the diagram.

The purple color represents the motion explanation for the current homing method diagram.

Figure 7.1.2. Homing method 1 diagram explained

© Technosoft 2024 111 CANopen Programming

7.2 Homing methods

7.2.1 Method 1: Homing on the Negative Limit Switch and Index Pulse

If the negative limit switch is inactive (low) the initial direction of movement is leftward (negative sense). After negative
limit switch is reached the motor will reverse the motion, moving in the positive sense with slow speed. The home
position is at the first index pulse to the right of the position where the negative limit switch becomes inactive.

Figure 7.2.1. Homing on the Negative Limit Switch and Index Pulse

7.2.2 Method 2: Homing on the Positive Limit Switch and Index Pulse

If the positive limit switch is inactive (low) the initial direction of movement is rightward (positive sense). After positive
limit switch is reached the motor will reverse the motion, moving in the negative sense with slow speed. The home
position is at the first index pulse to the left of the position where the positive limit switch becomes inactive.

Figure 7.2.2. Homing on the Positive Limit Switch and Index Pulse

7.2.3 Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse.

The home position is at the index pulse either after home switch high-low transition (method 3) or after home switch
low-high transition (method 4).

The diagram shows two initial movements for each type of method. This is because the initial direction of movement is
dependent on the state of the home switch (if low - move positive, if high - move negative).

Figure 7.2.3. Homing on the Positive Home Switch and Index Pulse

For method 3, if home input is high the initial direction of movement will be negative, or positive if home input is low,
and reverse (with slow speed) after home input low-high transition. The motor will stop at first index pulse after home
switch high-low transition.

For method 4, if home input is low the initial direction of movement will be positive, or negative if home input is high,
and reverse (with slow speed) after home input high-low transition. The motor will stop at first index pulse after home
switch low-high transition.

In all cases after home switch transition, the speed of the movement is slow.

© Technosoft 2024 112 CANopen Programming

7.2.4 Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse.

The home position is at the index pulse either after home switch high-low transition (method 5) or after home switch
low-high transition (method 6).

The initial direction of movement is dependent on the state of the home switch (if high - move positive, if low - move
negative).

In all cases after home switch transition, the speed of the movement is slow.

Figure 7.2.4. Homing on the Negative Home Switch and Index Pulse

For method 5, if home input is high the initial direction of movement will be positive, or negative if home input is low,
and reverse (with slow speed) after home input low-high transition. The motor will stop at first index pulse after home
switch high-low transition.

For method 6, if home input is low the initial direction of movement will be negative, or positive if home input is high,
and reverse (with slow speed) after home input high-low transition. The motor will stop at first index pulse after home
switch low-high transition.

7.2.5 Methods 7 to14: Homing on the Home Switch using limit switches and Index Pulse.

These methods use a home switch that is active over only a portion of the travel distance; in effect the switch has a
‘momentary’ action as the axle’s position sweeps past the switch.

Using methods 7 to 10 the initial direction of movement is to the right (positive), and using methods 11 to 14 the initial
direction of movement is to the left (negative), except the case when the home switch is active at the start of the motion
(initial direction of motion is dependent on the edge being sought – the rising edge or the falling edge).

The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the
following two diagrams.

If the initial direction of movement leads away from the home switch, the drive will reverse on encountering the relevant
limit switch (negative limit switch for methods 7 to 10, or positive limit switch for methods 11 to 14).

Figure 7.2.5. Homing on the Home Switch using limit switches and Index Pulse – Positive Initial Move

Using method 7 the initial move will be positive if home input is low and reverse after home input low-high transition, or
move negative if home input is high. Reverse also if the positive limit switch is reached. Stop at first index pulse after
home switch active region ends (high-low transition). In all cases after high-low home switch transition the motor speed
will be slow.

Using method 8 the initial move will be positive if home input is low, or negative if home input is high and reverse after
home input high-low transition. Reverse also if the positive limit switch is reached. Stop at first index pulse after home
switch active region starts (low-high transition). In all cases after low-high home switch transition the motor speed will
be slow.

© Technosoft 2024 113 CANopen Programming

Using method 9 the initial move will be positive and reverse (slow speed) after home input high-low transition. Reverse
also if the positive limit switch is reached. Stop at first index pulse after home switch active region starts (low-high
transition).

Using method 10 the initial move will be positive. Reverse if the positive limit switch is reached, then reverse once again
after home input low-high transition. Stop at first index pulse after home switch active region ends (high-low transition).
In all cases after high-low home switch transition the motor speed will be slow.

Figure 7.2.6. Homing on the Home Switch using limit switches and Index Pulse – Negative Initial Move

Using method 11 the initial move will be negative if home input is low and reverse after home input low-high transition.
Reverse also if the negative limit switch is reached. If home input is high move positive. Stop at first index pulse after
home switch active region ends (high-low transition). In all cases after high-low home switch transition the motor speed
will be slow.

Using method 12 the initial move will be negative if home input is low. If home input is high move positive and reverse
after home input high-low transition. Reverse also if the negative limit switch is reached. Stop at first index pulse after
home switch active region starts (low-high transition). In all cases after low-high home switch transition the motor speed
will be slow.

Using method 13 the initial move will be negative and reverse after home input high-low transition. Reverse also if the
negative limit switch is reached. Stop at first index pulse after home switch active region starts (low-high transition). In
all cases after high-low home switch transition the motor speed will be slow.

Using method 14 the initial move will be negative. Reverse if the negative limit switch is reached, then reverse once
again after home input low-high transition. Stop at first index pulse after home switch active region ends (high-low
transition). In all cases after high-low home switch transition the motor speed will be slow.

Methods 15 and 16: Reserved

7.2.6 Methods 17 to 30: Homing without an Index Pulse

These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse but
only on the relevant home or limit switch transitions.

7.2.7 Method 17: Homing on the Negative Limit Switch

Using method 17 if the negative limit switch is inactive (low) the initial direction of movement is leftward (negative
sense). After negative limit switch reached the motor will reverse the motion, moving in the positive sense with slow
speed. The home position is at the right of the position where the negative limit switch becomes inactive.

Figure 7.2.7. Homing on the Negative Limit Switch

7.2.8 Method 18: Homing on the Positive Limit Switch

Using method 18 if the positive limit switch is inactive (low) the initial direction of movement is rightward (positive sense).
After positive limit switch reached the motor will reverse the motion, moving in the negative sense with slow speed. The
home position is at the left of the position where the positive limit switch becomes inactive.

© Technosoft 2024 114 CANopen Programming

Figure 7.2.8. Homing on the Positive Limit Switch

7.2.9 Methods 19 and 20: Homing on the Positive Home Switch

The home position is at the home switch high-low transition (method 19) or low-high transition (method 20).

The diagram shows two initial movements for each type of method. This is because the initial direction of movement is
dependent on the state of the home switch (if low - move positive, if high - move negative).

Figure 7.2.9. Homing on the Positive Home Switch

Using method 19, if home input is high, the initial direction of movement will be negative, or positive if home input is
low, and reverse (with slow speed) after home input low-high transition. The motor will stop right after home switch high-
low transition.

Using method 20, if home input is low, the initial direction of movement will be positive, or negative if home input is
high, and reverse (with slow speed) after home input high-low transition. The motor will stop right after home switch low-
high transition.

7.2.10 Methods 21 and 22: Homing on the Negative Home Switch

The home position is at the home switch high-low transition (method 21) or after home switch low-high transition (method
22).

The initial direction of movement is dependent on the state of the home switch (if high - move positive, if low - move
negative).

In all cases after home switch transition, the speed of the movement is slow.

Figure 7.2.10. Homing on the Negative Home Switch

Using method 21, if home input is high, the initial direction of movement will be positive, or negative if home input is
low, and reverse (with slow speed) after home input low-high transition. The motor will stop right after home switch high-
low transition.

Using method 22, if home input is low, the initial direction of movement will be negative, or positive if home input is
high, and reverse (with slow speed) after home input high-low transition. The motor will stop right after home switch low-
high transition.

© Technosoft 2024 115 CANopen Programming

7.2.11 Methods 23 to30: Homing on the Home Switch using limit switches

Figure 7.2.11. Homing on the Home Switch using limit switches – Positive Initial Move

Using method 23 the initial move will be positive if home input is low and reverse after home input low-high transition,
or move negative if home input is high. Reverse also if the positive limit switch is reached. Stop right after home switch
active region ends (high-low transition).

Using method 24 the initial move will be positive if home input is low, or negative if home input is high and reverse after
home input high-low transition. Reverse also if the positive limit switch is reached. Stop right after home switch active
region starts (low-high transition).

Using method 25 the initial move will be positive and reverse after home input high-low transition. Reverse also if the
positive limit switch is reached. Stop right after home switch active region starts (low-high transition).

Using method 26 the initial move will be positive. Reverse if the positive limit switch is reached, then reverse once again
after home input low-high transition. Stop right after home switch active region ends (high-low transition).

Figure 7.2.12. Homing on the Home Switch using limit switches – Negative Initial Move

Using method 27 the initial move will be negative if home input is low and reverse after home input low-high transition.
Reverse also if the negative limit switch is reached. If home input is high move positive. Stop right after home switch
active region ends (high-low transition).

Using method 28 the initial move will be negative if home input is low. If home input is high move positive and reverse
after home input high-low transition. Reverse also if the negative limit switch is reached. Stop right after home switch
active region starts (low-high transition).

Using method 29 the initial move will be negative and reverse after home input high-low transition. Reverse also if the
negative limit switch is reached. Stop right after home switch active region starts (low-high transition).

Using method 30 the initial move will be negative. Reverse if the negative limit switch is reached, then reverse once
again after home input low-high transition. Stop right after home switch active region ends (high-low transition).

Methods 31 and 32: Reserved

7.2.12 Methods 33 and 34: Homing on the Index Pulse

Using methods 33 or 34 the direction of homing is negative or positive respectively. During these procedures, the motor
will move only at slow speed. The home position is at the index pulse found in the selected direction.

© Technosoft 2024 116 CANopen Programming

Index Pulse

33

34

Figure 7.2.13. Homing on the Index Pulse

7.2.13 Method 35: Homing on the Current Position

In method 35 the current position set with the value of home position (object 607Ch).

7.2.14 Method -1: Homing on the Negative Mechanical Limit and Index Pulse

7.2.14.1 Method -1 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move negative until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the first
index pulse. When the motor current is greater than the Homing Current Threshold (Object 207Bh: Homing current
threshold) for a specified amount of time in the Homing Current Threshold Time object (Object 207Ch: Homing current
threshold time), the motor will reverse direction. The home position is at the first index pulse to the right of the negative
mechanical limit. At the end of the procedure, the reported motor position will be the one set in Home offset (Object
607Ch: Home offset).

Warning!

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

Figure 7.2.14. Homing on the Negative Mechanical Limit and Index Pulse detecting the motor current increase

7.2.14.2 Method -1 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects Object 6065h: Following error window and Object 207Ch: Homing current
threshold time.

Move negative until a control error is detected, then reverse and stop at the first index pulse. The home position is at
the first index pulse to the right of the negative mechanical limit. At the end of the procedure, the reported motor position
will be the one set in Home offset (Object 607Ch: Home offset).

Figure 7.2.15. Homing on the Negative Mechanical Limit and Index Pulse detecting a control error

© Technosoft 2024 117 CANopen Programming

7.2.15 Method -2: Homing on the Positive Mechanical Limit and Index Pulse

7.2.15.1 Method -2 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move positive until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the first
index pulse. When the motor current is greater than the Homing Current Threshold (Object 207Bh: Homing current
threshold) for a specified amount of time in the Homing Current Threshold Time object (Object 207Ch: Homing current
threshold time), the motor will reverse direction. The home position is at the first index pulse to the left of the positive
mechanical limit. At the end of the procedure, the reported motor position will be the one set in Home offset (Object
607Ch: Home offset).

Warning!

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

Figure 7.2.16. Homing on the Positive Mechanical Limit and Index Pulse detecting the motor current increase

7.2.15.2 Method -2 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects Object 6065h: Following error window and Object 207Ch: Homing current
threshold time.

Move positive until a control error is detected, then reverse and stop at the first index pulse. The home position is at the
first index pulse to the left of the positive mechanical limit. At the end of the procedure, the reported motor position will
be the one set in Home offset (Object 607Ch: Home offset).

Figure 7.2.17. Homing on the Positive Mechanical Limit and Index Pulse detecting a control error

7.2.16 Method -3: Homing on the Negative Mechanical Limit without an Index Pulse.

7.2.16.1 Method -3 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move negative until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the
position set in “Home position”. When the motor current is greater than the Homing Current Threshold (Object 207Bh:
Homing current threshold) for specified amount of time set in the Homing Current Threshold Time object (Object 207Ch:
Homing current threshold time), the motor will reverse direction and stop after it has travelled the value set in Home
offset (Object 607Ch: Home offset). At the end of the procedure, the reported motor position will be the one set in Home
offset (Object 607Ch: Home offset).

© Technosoft 2024 118 CANopen Programming

Warning!

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

Figure 7.2.18. Homing on the Positive Mechanical Limit without an Index Pulse detecting the motor current increase

7.2.16.2 Method -3 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects Object 6065h: Following error window and Object 207Ch: Homing current
threshold time.

Move negative until a control error is detected, then reverse and stop at the position set in “Home position”. The motor
will reverse direction and stop after it has travelled the value set in Home offset (Object 607Ch: Home offset). At the end
of the procedure, the reported motor position will be the one set in Home offset (Object 607Ch: Home offset).

Figure 7.2.19. Homing on the Positive Mechanical Limit without an Index Pulse detecting a control error

7.2.17 Method -4: Homing on the Positive Mechanical Limit without an Index Pulse.

7.2.17.1 Method -4 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move positive until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the
position set in “Home position”. When the motor current is greater than the Homing Current Threshold (Object 207Bh:
Homing current threshold) for specified amount of time set in the Homing Current Threshold Time object (Object 207Ch:
Homing current threshold time), the motor will reverse direction and stop after it has travelled the absolute value set in
Home offset (Object 607Ch: Home offset). At the end of the procedure, the reported motor position will be the one set
in Home offset (Object 607Ch: Home offset).

Warning!

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

© Technosoft 2024 119 CANopen Programming

Figure 7.2.20. Homing on the Positive Mechanical Limit without an Index Pulse detecting the motor current increase

7.2.17.2 Method -4 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects Object 6065h: Following error window and Object 207Ch: Homing current
threshold time.

Move positive until a control error is detected, then reverse and stop at the position set in “Home position”. The motor
will reverse direction and stop after it has travelled the value set in Home offset (Object 607Ch: Home offset). At the end
of the procedure, the reported motor position will be the one set in Home offset (Object 607Ch: Home offset).

Figure 7.2.21. Homing on the Positive Mechanical Limit without an Index Pulse detecting a control error

7.3 Homing Mode Objects

This chapter describes the method by which the drive seeks the home position. There are 35 built-in homing methods,
as described in paragraph 7.1. Using the EasyMotion Studio II software, one can alter each of these homing methods
to create a custom homing method.

You can select which homing method to be used by writing the appropriate number in the Object 6098h: Homing method.

The user can specify the speeds and acceleration to be used during the homing. There is a further Object 607Ch: Home
offset that allows the user to displace zero in the user’s coordinate system from the home position.
In the homing mode, the bits in Controlword and Statusword have the following meaning:

7.3.1 Controlword in homing mode

MSB LSB

See 6040h Halt See 6040h Reserved Homing operation start See 6040h

15 9 8 7 6 5 4 3 0

Table 7.1 – Controlword bits description for Homing Mode

Name Value Description

Homing
operation start

0 -> 1 Only a 0 to 1 transition will start homing mode

Halt
0 Execute the instruction of bit 4

1 Stop drive with homing acceleration

© Technosoft 2024 120 CANopen Programming

7.3.2 Statusword in homing mode

MSB LSB

See 6041h
Homing
error

Homing
attained

See 6041h
Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 7.2 – Statusword bits description for Homing Mode

Name Value Description

Target reached
0

Halt = 0: Home position not reached
Halt = 1: Drive decelerates

1
Halt = 0: Home position reached
Halt = 1: Velocity of drive is 0

Homing
attained

0 Homing mode not yet completed

1 Homing mode carried out successfully

Homing error
0 No homing error

1 Homing error occurred; homing mode not carried out successfully.

Table 7.3 – Definition of Statusword bit 10,bit 12 and bit 13 in homing mode

Bit 13 Bit 12 Bit 10 Definition

0 0 0 Homing procedure is in progress

0 0 1 Homing procedure is interrupted or not started

0 1 0 Homing is attained, but target is not reached

0 1 1 Homing procedure is completed successfully

1 0 0 Homing error occurred, velocity is not 0

1 0 1 Homing error occurred, velocity is 0

1 1 X reserved

7.3.3 Object 607Ch: Home offset

The home offset will be set as the new drive position (Object 6064h: Position actual value) after a homing procedure is
finished. An exception applies only to the homing motions -3 and -4. See their description for more details.

If Object 210Bh: Auxiliary Settings Register2 bit 12 is set to 1, then after the homing ends, the actual position (6064h)
will not be reset to the value of 607Ch. This option is useful when using an absolute encoder, and only the absolute
position of the home sensor is needed. The homing will end the positioning right on the home sensor.

Object description:

Index 607Ch

Name Home offset

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping Possible

Units PU

Value range INTEGER32

Default value 0

The default value for this object can be changed by editing the parameter “HOME_OFFSET_607C” found in
parameters.xml of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.4 Object 6098h: Homing method

The homing method determines the method that will be used during homing.

Object description:

Index 6098h

Name Homing method

Object code VAR

Data type INTEGER8

Entry description:

Access RW

PDO mapping Possible

Value range INTEGER8

Default value 0

© Technosoft 2024 121 CANopen Programming

Data description:

Value Description

-128 … -5 Reserved

-4..-1 Methods -4 to -1

0 No homing operation will be executed

1 … 14 Methods 1 to 14

15,16 reserved

17..30 Methods 17 to 30

31,32 reserved

33..35 Methods 33 to 35

36 … 127 reserved

There are 35 built-in homing methods, conforming to DSP402 device profile. Using the EasyMotion Studio II software,
one can customize each of these homing methods.

The default value for this object can be changed by editing the parameter “HOME_NR_6098” found in parameters.xml
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.5 Object 6099h: Homing speeds

This object defines the speeds used during homing. It is given in velocity units. There are 2 homing speeds; in a typical
cycle the faster speed is used to find the home switch and the slower speed is used to find the index pulse.

Object description:

Index 6099h

Name Homing speeds

Object code ARRAY

Data type UNSIGNED32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description Speed during search for switch

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00010000 (1.0 IU)

Sub-index 2

Description Speed during search for zero

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00010000 (1.0 IU)

The default value for sub-index 1 can be changed by editing the parameter “HOME_HSPD_6099_01” found in
parameters.xml of the project file.

The default value for sub-index 2 can be changed by editing the parameter “HOME_LSPD_6099_02” found in
parameters.xml of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.6 Object 609Ah: Homing acceleration

The homing acceleration establishes the acceleration to be used for all the accelerations and decelerations with the
standard homing modes and is given in acceleration units.

Object description:

Index 609Ah

Name Homing acceleration

Object code VAR

Data type UNSIGNED32

Entry description:

© Technosoft 2024 122 CANopen Programming

Access RW

PDO mapping Possible

Units AU

Value range UNSIGNED32

Default value 0x0000199A (0.1 IU)

The default value for this object can be changed by editing the parameter “HOME_ACC_609A” found in parameters.xml
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.7 Object 207Bh: Homing current threshold

The Homing Current Threshold Level object together with object Homing current threshold time (Object 207Ch: Homing
current threshold time) defines the protection limits when reaching a mechanical stop during homing methods -1,-2,-3
and -4. The object defines the value of current in the drive, over which the homing procedure determines that the
mechanical limit has been reached when it lasts more than the time interval specified in object 207Ch. The current is set
in internal units.

Warning!

The value of Homing Current Threshold must be lower than the drive current limit.
Otherwise, the homing will not complete successfully (no homing error will be issued).
The current limit is set during setup. See Paragraph 1.3. Setting the current limit.
Current Threshold < current limit

Object description:

Index 207Bh

Name Homing current threshold

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Possible

Units CU

Value range -32768 … 32767

Default value 0

The default value for this object can be changed by editing the parameter “HOME_CRT_207B” found in parameters.xml
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 207Eh.

7.3.8 Object 207Ch: Homing current threshold time

The Homing current threshold time object together with object Homing current threshold Object 207Bh: Homing current
threshold) defines the protection limits when reaching a mechanical stop during homing methods -1,-2,-3 and -4. The
object sets the time interval after the homing current threshold is exceeded. After this time is completed without the
current dropping below the threshold, the next step in the homing shall be executed. It is set in time internal units.

In case a Stepper Open Loop with Step loss detection is used, this object will set the control error time detection when
methods -1 to -4 are used.

Object description:

Index 207Ch

Name Homing current threshold time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Units TU

Value range 0 … 65535

Default value 0

The default value for this object can be changed by editing the parameter “HOME_TIME_207C” found in parameters.xml
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

© Technosoft 2024 123 CANopen Programming

7.4 Homing example

Execute homing method number 18.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Homing speed during search for zero. Set the speed during search for zero to 150 rpm. By using a 500 lines
incremental encoder and 1ms sample rate for position/speed control the corresponding value of object 6099h
sub-index 2 expressed in encoder counts per sample is 50000h.

Send the following message (SDO access to object 6099h sub-index 2, 32-bit value 00050000h):

COB-ID Data

606 23 99 60 02 00 00 05 00

6. Homing speed during search for switch. Set the speed during search for switch to 600 rpm. By using a 500
lines incremental encoder and 1ms sample rate for position/speed control the corresponding value of object
6099h sub-index 1 expressed in encoder counts per sample is 140000h.

Send the following message (SDO access to object 6099h sub-index 1, 32-bit value 00140000h):

COB-ID Data

606 23 99 60 01 00 00 14 00

7. Homing acceleration. The homing acceleration establishes the acceleration to be used with the standard
homing moves. Set this value at 5 rot/s2. By using a 500 lines incremental encoder and 1ms sample rate for
position/speed control the corresponding value of object 609Ah expressed in encoder counts per square
sample is 28Fh.

Send the following message (SDO access to object 609Ah, 32-bit value 0000028Fh):

COB-ID Data

606 23 9A 60 00 8F 02 00 00

8. Home offset. Set the home offset to 1 rotation. By using a 500 lines incremental encoder the corresponding
value of object 607Ch expressed in encoder counts is 7D0h.

Send the following message (SDO access to object 607Ch, 32-bit value 000007D0h):

COB-ID Data

606 23 7C 60 00 D0 07 00 00

9. Homing method. Select homing method number 18.
Send the following message (SDO access to object 6098h, 8-bit value 12h):

COB-ID Data

606 2F 98 60 00 12 00 00 00

10. Mode of operation. Select homing mode.
Send the following message (SDO access to object 6060h, 8-bit value 6h):

COB-ID Data

606 2F 60 60 00 06 00 00 00

11. Start the homing.
Send the following message:

COB-ID Data

206 1F 00

12. Press for 5s the LSP button on the IO board and release it.
13. Wait for homing to end.
14. Check the value of motor actual position.

Send the following message (SDO access to object 6064h):

COB-ID Data

606 40 64 60 00 00 00 00 00

The node will return the value of motor actual position that should be the same as the value of home offset (plus or
minus few encoder counts depending on your position tuning).

© Technosoft 2024 124 CANopen Programming

8 Position Profile Mode

8.1 Overview

In Position Profile Mode, the drive controls the position.

The Position Profile Mode supports 2 motion modes:

• Trapezoidal profile. The built-in reference generator computes the position profile with a trapezoidal shape of
the speed, due to a limited acceleration. The CANopen master specifies the absolute or relative Target
Position (Object 607Ah: Target position), the Profile Velocity (Object 6081h: Profile velocity) and the Profile
Acceleration (Object 6083h: Profile acceleration)

In relative mode, the position to reach can be computed in 2 ways: standard (default) or additive. In standard
relative mode, the position to reach is computed by adding the position increment to the instantaneous position
in the moment when the command is executed. In the additive relative mode, the position to reach is computed
by adding the position increment to the previous position to reach, independently of the moment when the
command was issued. Bit 11 of Controlword activates the additive relative mode.

• S-curve profile the built-in reference generator computes a position profile with an S-curve shape of the speed.
This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the acceleration and an
S-curve profile for the speed. The CANopen master specifies the absolute or relative Target Position (Object
607Ah: Target position), the Profile Velocity (Object 6081h: Profile velocity), the Profile Acceleration (Object
6083h: Profile acceleration) and the jerk rate. The jerk rate is set indirectly via the Jerk time (Object 2023h:
Jerk time), which represents the time needed to reach the maximum acceleration starting from zero.

There are two different ways to apply target positions to a drive, controlled by the change set immediately bit in
Controlword:

8.1.1 Discrete motion profile (change set immediately = 0)

After reaching the target position the drive unit signals this status to a CANopen master and then receives a new set-
point. After reaching a target position the velocity normally is reduced to zero before starting a move to the next set-
point.

After the target position is sent to the drive, the CANopen master has to set the new set-point bit in Controlword. The
drive responds with bit set-point acknowledge set in Statusword. After that, the master has to reset bit new set-point to
0. Following this action, the drive will signalize that it can accept a new set-point by resetting set-point acknowledge bit
in Statusword after the reference generator has reached the designated demand position.

8.1.2 Continuous motion profile (change set immediately = 1)

The drive unit immediately processes the next target position, even if the actual movement is not completed. The drive
readapts the actual move to the new target position.

In this case, the handshake presented for change set immediately = 0 is not necessary. By setting the new set-point bit,
the slave will trigger the immediate update of the target position. In this case, if the target position is set as relative, also
bit 11 is taken into consideration (with or without additive movement).

Remark: In case Object 6086h: Motion profile type is set to 3 (jerk-limited ramp = S-curve profile), then change set
immediately bit must be 0, else a command error is issued.

© Technosoft 2024 125 CANopen Programming

8.1.3 Controlword in profile position mode

MSB LSB

See
6040h

Operation
Mode

See
6040h

Halt
See
6040h

Abs/rel
Change set
immediately

New set-
point

See
6040h

15 12 11 10 9 8 7 6 5 4 3 0

Table 8.1 – Controlword bits description for Position Profile Mode

Name Value Description

Operation
Mode

0
Trapezoidal profile - In case the movement is relative, do not add the new target
position to the old demand position
S-curve profile – Stop the motion with S-curve profile (jerk limited ramp)

1
Trapezoidal profile - In case the movement is relative, add the new target position
to the old demand position to obtain the new target position
S-curve profile – Stop the motion with trapezoidal profile (linear ramp)

New set-
point

0 -> 1 Only a 0 to 1 transition will start a new motion

Change set
immediately

0 Finish the actual positioning and then start the next positioning

1
Interrupt the actual positioning and start the next positioning. Valid only for linear
ramp profile.

Abs / rel
0 Target position is an absolute value

1 Target position is a relative value

Halt
0 Execute positioning

1 Stop drive with profile acceleration

8.1.4 Statusword in profile position mode

MSB LSB

See 6041h
Following
error

Set-point
acknowledge

See 6041h
Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 8.2 – Statusword bits description for Position Profile Mode

Name Value Description

Target reached
0

Halt = 0: Target position not reached
Halt = 1: Drive decelerates

1
Halt = 0: Target position reached
Halt = 1: Velocity of drive is 0

Set-point
acknowledge

0 Trajectory generator will accept a new set-point

1 Trajectory generator will not accept a new set-point.

Following error
0 No following error

1 Following error

8.2 Position Profile Mode Objects

8.2.1 Object 607Ah: Target position

The target position is the position that the drive should move to in position profile mode using the current settings of
motion control parameters such as velocity, acceleration, and motion profile type etc. It is given in position units.

The position units are user defined. The value can be converted into position increments using the position factor (see
the Factor group chapter).
If Controlword bit 6 = 0 (e.g. absolute positioning), represents the position to reach.

If Controlword bit 6 = 1 (e.g. relative positioning), represents the position displacement to do. When Controlword bit 14
= 0, the new position to reach is computed as: motor actual position (Object 6064h: Position actual value) +
displacement. When Controlword bit 14 = 1, the new position to reach is computed as: actual demand position (Object
6062h: Position demand value) + displacement.

Object description:

Index 607Ah

Name Target position

Object code VAR

Data type INTEGER32

© Technosoft 2024 126 CANopen Programming

Entry description:

Access RW

PDO mapping Yes

Value range -231 … 231-1

Default value No

8.2.2 Object 6081h: Profile velocity

In a position profile, it represents the maximum speed to reach at the end of the acceleration ramp. The profile velocity
is given in speed units.

The speed units are user defined. The value can be converted into internal units using the velocity encoder factor (see
the Factor group chapter). By default, the velocity value is given in internal units. They are encoder increments/Sample
loop. The default Sample loop is 1ms. The velocity variable is 32 bits long and it receives 16.16 data. The MSB takes
the integer part and the LSB takes the fractional part.
Example: for a target speed of 50.00 IU, 0x00320000 must be set in 6081h if no factor group is chosen.

Object description:

Index 6081h

Name Profile velocity

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value -

8.2.3 Object 6083h: Profile acceleration

In position or speed profiles, represents the acceleration and deceleration rates used to change the speed between 2
levels. The same rate is used when Quick Stop or Disable Operation commands are received. The profile acceleration
is given in acceleration units.

The acceleration units are user defined. The value can be converted into internal units using the acceleration factor
(see the Factor group chapter). If no factor is applied, the same description as object 6081h applies. So 65536 IU = 1
encoder increment / sample2.
Object description:

Index 6083h

Name Profile acceleration

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Value range 0..(232-1)

Default value -

8.2.4 Object 6085h: Quick stop deceleration

The quick stop deceleration is the deceleration used to stop the motor if the Quick Stop command is received and the
quick stop option code object (index 605Ah) is set to 2 or 6. It is also used when the fault reaction option code object
(Object 605Eh: Fault reaction option code) and the halt option code object (Object 605Dh: Halt option code) is 2. The
quick stop deceleration is given in user-defined acceleration units. User-defined means it can be modified by Factor
group objects.

Object description:

Index 6085h

Name Quick stop deceleration

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Value range 0..(232-1)

Default value -

© Technosoft 2024 127 CANopen Programming

8.2.5 Object 2023h: Jerk time

In this object, you can set the time to use for S-curve profile (jerk-limited ramp set in Object 6086h: Motion profile type).
The time units are given in ms.

Object description:

Index 2023h

Name Jerk time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Value range 0 … 65535

Default value -

8.2.6 Object 6086h: Motion profile type

Object description:

Index 6086h

Name Motion profile type

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Possible

Value range INTEGER16

Default value 0

Data description:

Profile code Profile type

-32768 … -1 Manufacturer specific (reserved)

0 Linear ramp (trapezoidal profile)

1,2 Reserved

3 Jerk-limited ramp (S-curve)

4 … 32767 Reserved

8.2.7 Object 6062h: Position demand value

This object represents the output of the trajectory generation. The position demand value is given in user-defined
position units that can be modified by the factor group objects.

Object description:

Index 6062h

Name Position demand value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Value range -231 … 231-1

Default value -

8.2.8 Object 6063h: Position actual internal value

This object represents the actual value of the position measurement device in increments.

Object description:

Index 6063h

Name Position actual internal value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Units increments

Value range -231 … 231-1

Default value -

© Technosoft 2024 128 CANopen Programming

8.2.9 Object 6064h: Position actual value

This object represents the actual value of the position measurement device. The position actual value is given in user-
defined position units that can be modified by the factor group objects.

Remarks:

1. When using a stepper open loop motor with no encoder this object reports the value of object Object 6062h:
Position demand value. In this case, Object 6063h: Position actual internal value will report the value 0, as there
is no feedback device.

2. When using a stepper open loop with encoder on motor configuration (for step loss detection), based on the
internal register ASR bit 11, this object reports:

▪ ASR.11=0 (default) - the value of object 6062h Position demand value. In this case, object 6063h will show the
actual encoder value in increments.

▪ 13F

1ASR.11=1 – the value of the feedback device scaled into microsteps which are the same value that is used
for position commands in 607Ah

Object description:

Index 6064h

Name Position actual value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Yes

Value range -231 … 231-1

Default value -

8.2.10 Object 6065h: Following error window

This object defines a range of tolerated position values symmetrically to the position demand value, expressed in
position units. If the position actual value is above the following error window for a period larger than the one defined in
following error time out, a following error occurs. If the value of the following error window is 232-1, the following control
is switched off.

The maximum value allowed for the following error window parameter, expressed in increments, is:

- 232-1 for firmware versions F514G or newer and FA01x
- 32767 for F508x/509x and F523x/524x firmware

Object description:

Index 6065h

Name Following error window

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value -

This object is automatically set in the Setup part by modifying the Position control error.

The value for this object can be changed by editing the parameter:

- “ERRMAXL” for firmware version F514G or newer and FA01x
- “ERRMAX” for F508x/509x and F523x/524x firmware

found in parameters.xml of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.11 Object 6066h: Following error time out

See Object 6065h: Following error window. The value is given in control loop time which is by default 1ms.

Object description:

Index 6066h

Name Following error time out

Object code VAR

Data type UNSIGNED16

1 ASR.11=1 implementation is available only of firmware versions F514x and FA01x.

© Technosoft 2024 129 CANopen Programming

Entry description:

Access RW

PDO mapping Possible

Units TU

Value range 0 … 65535

Default value -

The value for this object can be changed by editing the parameter “TERRMAX” found in parameters.xml of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.12 Object 6067h: Position window

The position window defines a symmetrical range of accepted positions relative to the target position. If the position
actual value is within the position window for a time period defined inside the position window time object, this target
position is regarded as reached. The values are given in user-defined position units that can be modified by the factor
group objects. User-defined means it can be modified by Factor group objects. If the value of the position window is 232-
1, the position window control is switched off and the target position will be regarded as reached when the position
reference is reached.
The maximum value allowed for the position window parameter, expressed in increments, is 32767.

Object description:

Index 6067h

Name Position window

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value -

This object is automatically set in Setup part by modifying the Band in Motion complete settings in Motion Settings
section.

The value for this object can be changed by editing the parameter “POSOKLIM” found in parameters.xml of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.13 Object 6068h: Position window time

See description of Object 6067h: Position window. The values are given in user-defined time units that can be modified
by the factor group objects.

Object description:

Index 6068h

Name Position window time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Units TU

Value range 0 … 65535

Default value -

This object is automatically set in Setup part by modifying the Band in Motion complete settings in Motion Settings
section.

© Technosoft 2024 130 CANopen Programming

The value for this object can be changed by editing the parameter “TONPOSOK” found in parameters.xml of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.14 Object 607Bh: Position range limit14F

1

This object indicates the configured maximal and minimal position range limits. It limits the numerical range of the input
value. On reaching or exceeding these limits, the input value shall wrap automatically to the other end of the range.
Wrap-around of the input value may be prevented by setting software position limits as defined in
Object 607Dh: Software position limit 5F. To disable the position range limits, the min position range limit (sub-index 01h)
and max position range limit (sub-index 02h) must be set to 0. The values are given in user-defined position units that
can be modified by the factor group objects.

Object description:

Index 607Bh

Name Position range limit

Object code ARRAY

Data type INTEGER32

Entry description:

Sub-index 0

Description Number of entries

Access RO

PDO mapping No

Default value 2

Sub-index 1

Description Min position range limit

Access RW

PDO mapping Possible

Value range INTEGER32

Default value No

Sub-index 2

Description Max position range limit

Access RW

PDO mapping Possible

Value range INTEGER32

Default value No

This object and its values can be defined directly in Setup part under the Protections and Limits section.

Also, activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.15 Object 60F2h: Positioning option code 15F

2

This object configures the positioning behavior as for the profile positioning mode or the interpolated positioning mode.

Object description:

Index 60F2h

Name Positioning option code

Object code VAR

Data type UNSIGNED16

Entry description:

1 Object 607Bh is available only with firmware versions F514x and FA01x.
2 Object 60F2h is available only with firmware versions F514x and FA01x.

© Technosoft 2024 131 CANopen Programming

Access RW

PDO mapping Possible

Value range UNSIGNED16

Default value 0000h

MSB LSB

Reserved rado Reserved

15 8 7 6 5 0

Table 8.3 – Positioning option code bits description

Name bit 7 bit 6 Description

rado

0 0

Normal positioning similar to linear axis; If reaching or exceeding the Object 607Bh:
Position range limit 14F the input value shall wrap automatically to the other end of the range.
Positioning can be relative or absolute.
Only with this bit combination, the movement greater than a modulo value is possible.

0 1
Positioning only in negative direction; if target position is higher than actual position,
axis moves over the min position limit (607Bh, sub-index 01h) to the target position.

1 0
Positioning only in positive direction; if target position is lower than actual position, axis
moves over the max position limit (607Bh, sub-index 02h) to the target position.

1 1
Positioning with the shortest way to the target position.
NOTE: If the difference between actual value and target position in a 360° system is
180°, the axis moves in positive direction.

The figure below shows movement examples depending on settings of the bits 6 and 7. Here the min position range
limit (607Bh, sub-index 01h) is 0° and the max position range limit (607Bh, sub-index 02h) is 360°.

Figure 8.2.1. Rotary axis positioning example

A movement greater than a modulo value with more than 360° (bit 6 and 7 in this object are set to 0) on a rotary axis
can be done with relative and absolute values depending on the bit 6 in the controlword. There are positive and negative
values possible.

The figure below shows an example for absolute positioning in a 360° system. The actual position is 90° and absolute
target position is 630°. The axis will move in positive direction one time via the max position limit to 270°. To move in
negative direction, the negative sign for target position shall be used.

Figure 8.2.2. Example for absolute movement greater than modulo value

The figure below shows an example for relative positioning in a 360° system. The actual position is 300° and relative
target position is 500°. The axis will move in positive direction two times via the max position limit to 80°. To move in
negative direction, the negative sign for target position is used. The difference between min and max position range
limits (see object 607Bh) are representable in multiples of encoder increments.

© Technosoft 2024 132 CANopen Programming

Figure 8.2.3. Example for relative movement greater than modulo value

The default value for this object can be changed by editing the parameter “POSOPTCODE” found in parameters.xml of
the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.16 Object 60F4h: Following error actual value

This object represents the actual value of the following error, given in user-defined position units that can be modified
by the factor group objects.

Object description:

Index 60F4h

Name Following error actual value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Value range INTEGER32

Default value -

8.2.17 Object 60FCh: Position demand internal value

This output of the trajectory generator in profile position mode is an internal value using position increments as units. It
can be used as an alternative to Object 6062h: Position demand value.

Object description:

Index 60FCh

Name Position demand internal value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Units Increments

Value range -231 … 231-1

Default value -

8.2.18 Object 2022h: Control effort1

This object can be used to visualize the control effort of the drive (the reference for the current controller). It is available
in internal units.

Object description:

Index 2022h

Name Control effort

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping Yes

Value range INTEGER16

Default value -

1 Available starting with firmware version FA01x

© Technosoft 2024 133 CANopen Programming

8.2.19 Object 2081h: Set/Change the actual motor position

This object sets the motor position to the value written in it. It affects Object 6064h: Position actual value, Object 6063h:
Position actual internal value and Object 6062h: Position demand value.

The object is not affected by the Factor Group and it receives its value in Internal Units.

Object description:

Index 2081h

Name Set actual position

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping No

Value range -231…231-1

Default value -

8.2.20 Object 2088h16F

1: Actual internal position from sensor on motor

This object shows the position value read from the encoder on the motor in increments, in case a dual loop control
method is used.

The factor group objects have no effect on it.

Object description:

Index 2088h

Name
Actual internal position from sensor on
motor

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Units increments

Value range -231 … 231-1

Default value -

8.2.21 Object 208Dh17F

2: Auxiliary encoder position

This object represents the actual value of the auxiliary position measurement device, expressed in internal units, when
operating in the digital external reference mode (signal type set to Encoder). The factor group objects have no effect on
it.

Object description:

Index 208Dh

Name Auxiliary encoder value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Units increments

Value range -231 … 231-1

Default value -

1 Object 2088h applies only to drives which have a secondary feedback
2 Object 208Dh applies only to drives which have a secondary feedback

© Technosoft 2024 134 CANopen Programming

8.3 Position Profile Examples

8.3.1 Relative trapezoidal example

Execute an relative trapezoidal profile. First, perform 20rotations, wait motion complete and then set the target position
of 200 rotations.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Modes of operation. Select position mode.

Send the following message (SDO access to object 6060h, 8-bit value 1h):

COB-ID Data

606 2F 60 60 00 01 00 00 00

6. Target position. Set the target position to 20 rotations. By using a 500 lines incremental encoder the
corresponding value of object 607Ah expressed in encoder counts is 9C40h.

Send the following message (SDO access to object 607Ah 32-bit value 00009C40h):

COB-ID Data

606 23 7A 60 00 40 9C 00 00

7. Target speed. Set the target speed normally attained at the end of acceleration ramp to 500 rpm. By using a
500 lines incremental encoder and 1ms sample rate for position/speed control the corresponding value of object 6081h
expressed in encoder counts per sample is 10AAAch(16.667 counts/sample).

Send the following message (SDO access to object 6081h, 32-bit value 0010AAAch):

COB-ID Data

606 23 81 60 00 AC AA 10 00

8. Start the profile. If Controlword bit 6 is set (Controlword.6 = 1), a relative positioning will start.

Send the following message

COB-ID Data

206 5F 00

9. Wait movement to finish.

10. Reset the set point.

Send the following message

COB-ID Data

206 0F 00

11. Target position. Set the target position to 200 rotations. By using a 500 lines incremental encoder the
corresponding value of object 607Ah expressed in encoder counts is 61A80h.

Send the following message (SDO access to object 607Ah 32-bit value 00061A80h):

COB-ID Data

606 23 7A 60 00 80 1A 06 00

© Technosoft 2024 135 CANopen Programming

12. Start the profile.

Send the following message

COB-ID Data

206 5F 00

13. Wait movement to finish.

14. Check the value of motor actual position.

Send the following message (SDO access to object 6064h):

COB-ID Data

606 40 64 60 00 00 00 00 00

15. Check the value of position demand value.

Send the following message (SDO access to object 6062h):

COB-ID Data

606 40 62 60 00 00 00 00 00

At the end of movement the motor position actual value should be equal with position demand value (plus or minus few
encoder counts depending on your position tuning) and the motor should rotate 220 times.

8.3.2 Absolute trapezoidal example

Execute an absolute trapezoidal profile. First, perform 4 rotations, wait motion complete and then set the target position
of 16 rotations.

16. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

17. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

18. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

19. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

20. Modes of operation. Select position mode.

Send the following message (SDO access to object 6060h, 8-bit value 1h):

COB-ID Data

606 2F 60 60 00 01 00 00 00

21. Target position. Set the target position to 4 rotations. By using a 500 lines incremental encoder the
corresponding value of object 607Ah expressed in encoder counts is 1F40h.

Send the following message (SDO access to object 607Ah 32-bit value 00001F40h):

COB-ID Data

606 23 7A 60 00 40 1F 00 00

22. Target speed. Set the target speed normally attained at the end of acceleration ramp to 500 rpm. By using a
500 lines incremental encoder and 1ms sample rate for position/speed control the corresponding value of object 6081h
expressed in encoder counts per sample is 10AAAch(16.667 counts/sample).

Send the following message (SDO access to object 6081h, 32-bit value 0010AAAch):

© Technosoft 2024 136 CANopen Programming

COB-ID Data

606 23 81 60 00 AC AA 10 00

23. Start the profile. If Controlword bit 6 is not set (Controlword.6 = 0), an absolute positioning will start.

Send the following message

COB-ID Data

206 1F 00

24. Wait movement to finish.

25. Reset the set point.

Send the following message

COB-ID Data

206 0F 00

26. Target position. Set the target position to 16 rotations. By using a 500 lines incremental encoder the
corresponding value of object 607Ah expressed in encoder counts is 7D00h.

Send the following message (SDO access to object 607Ah 32-bit value 00007D00h):

COB-ID Data

606 23 7A 60 00 00 7D 00 00

27. Start the profile.

Send the following message

COB-ID Data

206 1F 00

28. Wait movement to finish.

29. Check the value of motor actual position.

Send the following message (SDO access to object 6064h):

COB-ID Data

606 40 64 60 00 00 00 00 00

30. Check the value of position demand value.

Send the following message (SDO access to object 6062h):

COB-ID Data

606 40 62 60 00 00 00 00 00

At the end of movement the motor position actual value should be equal with position demand value (plus or minus few
encoder counts depending on your position tuning) and the motor should rotate 16 times.

8.3.3 Relative Jerk-limited ramp profile example

Execute an absolute Jerk-limited ramp profile.

Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the shutdown
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command via
Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

© Technosoft 2024 137 CANopen Programming

COB-ID Data

206 0F 00

Mode of operation. Select position mode.

Send the following message (SDO access to object 6060h, 8-bit value 1h):

COB-ID Data

606 2F 60 60 00 01 00 00 00

Motion profile type. Select Jerk-limited ramp.

Send the following message (SDO access to object 6086h, 16-bit value 3h):

COB-ID Data

606 2B 86 60 00 03 00 00 00

Target position. Set the target position to 10 rotations. By using a 500 lines incremental encoder the corresponding
value of object 607Ah expressed in encoder counts is 4E20h.

Send the following message (SDO access to object 607Ah 32-bit value 00004E20h):

COB-ID Data

606 23 7A 60 00 20 4E 00 00

Target speed. Set the target speed to 450 rpm. By using a 500 lines incremental encoder and 1ms sample rate for
position/speed control the corresponding value of object 6081h expressed in encoder counts per sample is
000F0000h(15.0 counts/sample).

Send the following message (SDO access to object 6081h, 32-bit value 000F0000h):

COB-ID Data

606 23 81 60 00 00 00 0F 00

Jerk time. Set the time to use for Jerk-limited ramp. For more information related to this parameter, see the EasyMotion
Studio II help.

Send the following message (SDO access to object 2023h, 16-bit value 01F4h):

COB-ID Data

606 2B 23 20 00 01 F4 00 00

Start the profile. If Controlword bit 6 is set (Controlword.6 = 1), a relative positioning will start.

Send the following message

COB-ID Data

206 5F 00

Wait movement to finish.

Check the value of motor actual position.

Send the following message (SDO access to object 6064h):

COB-ID Data

606 40 64 60 00 00 00 00 00

Check the value of position demand value.

Send the following message (SDO access to object 6062h):

COB-ID Data

606 40 62 60 00 00 00 00 00

At the end of movement, the motor position actual value should be equal with position demand value (plus or minus few
encoder counts depending on your position tuning).

8.3.4 Absolute Jerk-limited ramp profile example

Execute an absolute Jerk-limited ramp profile.

Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the shutdown
command via Controlword associated PDO.

© Technosoft 2024 138 CANopen Programming

Send the following message:

COB-ID Data

206 06 00

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command via
Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

Mode of operation. Select position mode.

Send the following message (SDO access to object 6060h, 8-bit value 1h):

COB-ID Data

606 2F 60 60 00 01 00 00 00

Motion profile type. Select Jerk-limited ramp.

Send the following message (SDO access to object 6086h, 16-bit value 3h):

COB-ID Data

606 2B 86 60 00 03 00 00 00

Target position. Set the target position to 5 rotations. By using a 500 lines incremental encoder the corresponding
value of object 607Ah expressed in encoder counts is 2710h.

Send the following message (SDO access to object 607Ah 32-bit value 00002710h):

COB-ID Data

606 23 7A 60 00 10 27 00 00

Target speed. Set the target speed to 150 rpm. By using a 500 lines incremental encoder and 1ms sample rate for
position/speed control the corresponding value of object 6081h expressed in encoder counts per sample is
00050000h(5.0 counts/sample).

Send the following message (SDO access to object 6081h, 32-bit value 00050000h):

COB-ID Data

606 23 81 60 00 00 00 05 00

Jerk time. Set the time to use for Jerk-limited ramp. For more information related to this parameter, see the EasyMotion
Studio II help.

Send the following message (SDO access to object 2023h, 16-bit value 13Bh):

COB-ID Data

606 2B 23 20 00 3B 01 00 00

Start the profile. If Controlword bit 6 is not set (Controlword.6 = 0), an absolute positioning will start.

Send the following message

COB-ID Data

206 1F 00

Wait movement to finish.

Check the value of motor actual position.

Send the following message (SDO access to object 6064h):

COB-ID Data

606 40 64 60 00 00 00 00 00

Check the value of position demand value.

Send the following message (SDO access to object 6062h):

COB-ID Data

606 40 62 60 00 00 00 00 00

At the end of movement, the motor position actual value should be equal with position demand value (plus or minus few
encoder counts depending on your position tuning).

© Technosoft 2024 139 CANopen Programming

9 Torque Profile Mode

9.1 Overview

The profile torque mode allows to control the motor in torque mode by transmitting the target torque and torque slope
values, which are processed via the trajectory generator.

Remark: This mode is available starting with firmware versions F514K and FA01x.

9.1.1 Controlword in profile torque mode

MSB LSB

See 6040h Halt See 6040h Reserved See 6040h

15 9 8 7 6 4 3 0

Table 9.1 – Controlword bits description for Torque Profile Mode

Name Value Description

Halt
0 Execute torque profile

1 Stop drive according to the halt option code (605Dh)

9.1.2 Statusword in profile torque mode

MSB LSB

See 6041h Reserved See 6041h Target reached See 6041h

15 14 13 12 11 10 9 0

Table 9.2 – Statusword bits description for Torque Profile Mode

Name Value Description

Target reached
0

Halt = 0: Target torque not reached
Halt = 1: Drive decelerates

1
Halt = 0: Target torque reached
Halt = 1: Velocity of drive is 0

9.2 Torque Profile Mode Objects

9.2.1 Object 6071h: Target torque

This parameter specifies the input value configured for the torque controller when operating in Torque Profile mode.
The unit for this object is given in IU, except for FA01x firmware version, where Object 2115h: ASR4 bit 0 controls the
unit in which the object is given:

- If ASR4.0 = 0, the unit for this object is given in IU
- If ASR4.0 = 1, the unit is in thousandths (‰) of the motor's rated current specified in object 6075h.

Example:
- If the target torque is set to 500, it represents 50.0% (500 ‰) of the motor's rated current.
- If the target torque is set to 255, it represents 25.5% (255 ‰) of the motor's rated current.
Remarks:
1. When object 2115h is set to 1, the target torque can exceed 100% (equivalent to 1000 ‰) of the motor's rated current,
as defined by object 6075h.
2. The current limit is set through Object 207Fh: Current limit. This value acts as a safety threshold and will restrict the
maximum current, regardless of the value specified in object 6071h.

Object description:

Index 6071h

Name Target torque

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Yes

Value range INTEGER16

Default value 0000h

© Technosoft 2024 140 CANopen Programming

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈] = 65520 ⋅ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴]2 ⋅ 𝐼𝑝𝑒𝑎𝑘

where Ipeak is the peak current supported by the drive and current[IU] is the command value for object 6071h.

9.2.2 Object 6075h: Motor rated current

The motor rated current is the motor’s nominal current which needs to be expressed in mA. The object contains the
nominal motor current declared in EasyMotion Studio II.

Object description:

Index 6075h

Name Motor rated current

Object code VAR

Data type UNSIGNED32

Entry description:

Sub-index 00h

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value
Motor nominal current specified in the
setup part.

9.2.3 Object 6087h: Torque slope

The torque slope indicate the rate of change of current. The value needs to be given in in units of per thousand of rated
current specified in object 6075h per second.

The rate of change of current is calculated as follows:
𝑅𝑎𝑡𝑒𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (6075ℎ)1000 × 𝑇𝑜𝑟𝑞𝑢𝑒 𝑆𝑙𝑜𝑝𝑒 (6087ℎ)/𝑠

Example: If the Rated Current specified in object 6075h is set to 2000mA and the Torque Slope specified in object 6087h
is set to 1000, the rate of change of current is 2A/s.
Object description:

Index 6087h

Name Torque slope

Object code VAR

Data type UNSIGNED32

Entry description:

Sub-index 00h

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0

9.3 Torque Profile Example

Execute a torque profile.

Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the shutdown
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command via
Controlword associated PDO.

Send the following message:

COB-ID Data

© Technosoft 2024 141 CANopen Programming

206 07 00

Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

Mode of operation. Select torque mode.

Send the following message (SDO access to object 6060h, 8-bit value 4h):

COB-ID Data

606 2F 60 60 00 04 00 00 00

Motor rated current. Define the motor nominal(rated) current of 1000mA.

Send the following message (SDO access to object 6075h, 32-bit value 03E8h):

COB-ID Data

606 23 75 60 00 E8 03 00 00

Target slope. Define a target slope of 1000mA.

Send the following message (SDO access to object 6087h, 32-bit value 03E8h):

COB-ID Data

606 23 87 60 00 E8 03 00 00

Configure the formatting and representation of object 6071h1. To define the unit as thousandths (‰) of the motor's
rated current (specified in object 6075h), send the following message (SDO access to object 2115h, 32-bit value 0001h):

COB-ID Data

606 23 15 21 00 01 00 00 00

Target torque. Define a target torque of 50.0% of the motor rated current.

Send the following message (SDO access to object 6071h, 16-bit value 01F4h):

COB-ID Data

606 2B 71 60 00 F4 01 00 00

The motor will move positive and reach a current of 50.0% of the motor rated current (500mA).

Now define a target torque of -120.0% of the motor rated current.
Send the following message (SDO access to object 6071h, 16-bit value FB50h):

COB-ID Data

606 2B 71 60 00 50 FB 00 00

The motor will move negative and reach a current of -120.0% of the motor rated current (-1200mA).

1 Only for FA01x firmware version.

© Technosoft 2024 142 CANopen Programming

10 Interpolated Position Mode

10.1 Overview

The interpolated Position Mode is used to control multiple coordinated axles or a single axle with the need for time-
interpolation of set-point data. The Interpolated Position Mode can use the time synchronization mechanism for a time
coordination of the related drive units, based on the SYNC and the High Resolution Time Stamp messages (see object
1013 for details).

The Interpolated Position Mode allows a host controller to transmit a stream of interpolation data to a drive unit. The
interpolation data is better sent in bursts because the drive supports an input buffer. The buffer size is the number of
interpolation data records that may be sent to the drive to fill the input buffer.

The interpolation algorithm can be defined in the interpolation sub mode select. Linear (PT – Position Time) interpolation
is the default interpolation method.

10.1.1 Internal States

Figure 10.1.1. Internal States for the Interpolated Position Mode

1) See state machine Operation enabled1)

Interpolation inactive: This state is entered when the device is in state Operation enabled and the Interpolated Position
Mode is selected. The drive will accept input data and will buffer it for interpolation calculations, but it does not move
the motor.

Interpolation active: This state is entered when a device is in state Operation enabled and the Interpolation Position
Mode is selected and enabled. The drive will accept input data and will move the motor.

State Transitions of the Internal States

State Transition 1: NO IP-MODE SELECTED => IP-MODE INACTIVE

 Event: Select ip-mode with modes of operations while inside Operation enable

State Transition 2: IP-MODE INACTIVE => NO IP-MODE SELECTED

 Event: Select any other mode while inside Operation enable

State Transition 3: IP-MODE INACTIVE => IP-MODE ACTIVE

 Event: Set bit enable ip mode (bit4) of the Controlword while in ip-mode and Operation enable

State Transition 4: IP-MODE ACTIVE => IP-MODE INACTIVE

 Event: Reset bit enable ip mode (bit4) of the Controlword while in ip-mode and Operation enable

10.1.2 Controlword in interpolated position mode

MSB LSB

See
6040h

Stop option
See
6040h

Halt
See
6040h

Abs /
rel

Reserved
Enable ip
mode

See 6040h

15 12 11 10 9 8 7 6 5 4 3 0

© Technosoft 2024 143 CANopen Programming

Table 10.1 – Controlword bits description for Interpolated Position Mode

Name 6040h bit Value Description

Enable ip
mode

4
0 Interpolated position mode inactive

1 Interpolated position mode active

Abs / rel 6
0 Set position is an absolute value

1 Set position is a relative value (similar to Cyclic Synchronous Velocity)

Halt 8
0 Execute the instruction of bit 4

1 Stop drive with (profile acceleration)

Stop
option

11
0

On transition to inactive mode, stop drive immediately using profile
acceleration

1
On transition to inactive mode, stop drive after finishing the current
segment.

10.1.3 Statusword in interpolated position mode

MSB LSB

See 6041h Reserved ip mode active See 6041h Target reached See 6041h

15 14 13 12 11 10 9 0

Table 10.2 – Statusword bits description for Interpolated Position Mode

Name Value Description

Target reached
0

Halt = 0: Final position not reached
Halt = 1: Drive decelerates

1
Halt = 0: Final position reached
Halt = 1: Velocity of drive is 0

ip mode active
0 Interpolated position mode inactive

1 Interpolated position mode active

10.2 Interpolated Position Objects

10.2.1 Object 60C0h: Interpolation sub mode select

In the Interpolated Position Mode the drive supports three interpolation modes:

1. Linear interpolation as described in the CiA 402 standard (when object 208Eh bit8=1); This mode is almost
identical with Cyclic Synchronous Position mode, only that it receives its position data into 60C1h sub-index 01
instead of object 607Ah. No interpolation point buffer will be used.

2. PT (Position – Time) linear interpolation (legacy) (when object 208Eh bit8=0)
3. PVT (Position – Velocity – Time) cubic interpolation (legacy) (when object 208Eh bit8=0).

The interpolation mode is selected with Interpolation sub-mode select object. The sub-mode can be changed only when
the drive is in Interpolation inactive state.

Each change of the interpolation mode will trigger the reset of the buffer associated with the interpolated position mode
(because the physical memory available is the same for both the sub-modes, size of each data record is different).

Object description:

Index 60C0h

Name Interpolation sub mode select

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Possible

Value range -215 … 215-1

Default value 0

Data description:

Profile code Profile type

-32768 … -2 Manufacturer specific (reserved)

-1
PVT (Position – Velocity – Time) cubic
interpolation

0
Linear Interpolation or PT (Position –
Time)

+1…+32767 Reserved

© Technosoft 2024 144 CANopen Programming

10.2.2 Object 60C1h: Interpolation data record

The Interpolation Data Record contains the data words that are necessary to perform the interpolation algorithm. The
number of data words in the record is defined by the interpolation data configuration.

Object description:

Index 60C1h

Name Interpolation data record

Object code ARRAY

Number of elements 2

Data Type Interpolated Mode dependent

Entry description

Sub-index 01h

Description X1: the first parameter of ip function

Access RW

PDO mapping Possible

Value range Interpolated Mode dependent

Default value -

Sub-index 02h

Description
X2: the second parameter of ip
function

Access RW

PDO mapping Possible

Value range Interpolated Mode dependent

Default value -

Description of the sub-indexes:

X1 and X2 form a 64-bit data structure as defined below:

10.2.2.1 a) For linear interpolation (standard DS402 implementation)

To work with this mode, object 208Eh bit8 must be 1. The default value of this bit is 1 with the current drive
templates.
There are 2 parameters in this mode:
Position – a 32-bit long integer value representing the target position (relative or absolute). Unit - position increments.

– the Linear interpolation position command is received in object 60C1h sub-index1; sub-index2 is not used
Time – the time is defined in object 60C2h.
The position points should be sent in a synchronous RxPDO at fixed time intervals defined in object 60C2h.

Figure 10.2.1. Linear interpolation point 32-bit data structure

10.2.2.2 b) For PT (Position –Time) linear interpolation (legacy).

To work with this mode, object 208Eh bit8 must be 0. The default value of this bit is 1 with the current drive
templates.
There are 3 parameters in this mode:
Position – a 32-bit long integer value representing the target position (relative or absolute). Unit - position increments.
Time – a 16-bit unsigned integer value representing the time of a PT segment. Unit - position / speed loop samplings.
Counter – a 7-bit unsigned integer value representing an integrity counter. It can be used in order to have a feedback
of the last point sent to the drive and detect errors in transmission.
In the example below Position[7…0] represents bits 0..7 of the position value.

Byte 0 Position [7...0]

Byte 1 Position [15...8]

Byte 2 Position [23...16]

Byte 3 Position [31...24]

Byte 4 Time [7...0]18F

1

Byte 5 Time [15...8]1

Byte 6 Reserved

Byte 7 Counter[6…0] Reserved

1 If object 207Ah Interpolated position 1st order time is used, these bits will be overwritten with the value defined in it

© Technosoft 2024 145 CANopen Programming

Figure 10.2.2. PT interpolation point 64-bit data structure

Remarks:

- The integrity counter is written in byte 3 of 60C1h Sub-index 2, on the most significant 7 bits (bit 1 to bit 7).

- The integrity counter is 7 bits long, so it can have a value up to 127. When the integrity counter reaches 127, the next
value is 0

10.2.2.3 c) For PVT (Position – Velocity – Time) cubic interpolation

To work with this mode, object 208Eh bit8 must be 0. The default value of this bit is 1 with the current drives
templates.

There are 4 parameters in this mode:

Position – a 24-bit long integer value representing the target position (relative or absolute). Unit - position increments.

Velocity – a 24-bit fixed value representing the end point velocity (16 MSB integer part and 8 LSB fractional part). Unit
- increments / sampling

Time – a 9-bit unsigned integer value representing the time of a PVT segment. Unit - position / speed loop samplings.

Counter – a 7-bit unsigned integer value representing an integrity counter. It can be used in order to have a feedback
of the last point sent to the drive and detect errors in transmission.

In the example below Position 0 [7…0] represents bits 0..7 of the position value.

Byte 0 Position 0 [7...0]

Byte 1 Position 1 [15...8]

Byte 2 Velocity 0 [15...8]

Byte 3 Position 2 [23...16]

Byte 4 Velocity 1 [23...16]

Byte 5 Velocity 2 [31...24]

Byte 6 Time [7...0]

Byte 7
Counter[6…0] Time[8]

bit7 - - - - bit1 bit0

Figure 10.2.3. PVT interpolation point 64-bit data structure

Remarks:

- The integrity counter is written in byte 3 of 60C1h Sub-index 2, on the most significant 7 bits (bit 1 to bit 7).

- The integrity counter is 7 bits long, so it can have a value up to 127. When the integrity counter reaches 127, the
next value is 0.

10.2.3 Object 2072h: Interpolated position mode status

The object provides additional status information for the interpolated position mode.

Object description:

Index 2072h

Name Interpolated position mode status

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Possible

Value range UNSIGNED16

Default value -

© Technosoft 2024 146 CANopen Programming

Table 10.3 – Interpolated position mode status bit description

Bit Value Description

15
0 Buffer is not empty

1 Buffer is empty – there is no point in the buffer.

14

0 Buffer is not low

1
Buffer is low – the number of points from the buffer is equal or less than the low
limit set using object 2074h.

13
0 Buffer is not full

1 Buffer is full – the number of points in the buffer is equal with the buffer dimension.

12

0 No integrity counter error

1
Integrity counter error. If integrity counter error checking is enabled and the
integrity counter sent by the master does not match the integrity counter of the
drive.

11
0

Valid only for PVT (cubic interpolation): Drive has maintained interpolated
position mode after a buffer empty condition (the velocity of the last point was 0).

1
Valid only for PVT (cubic interpolation): Drive has performed a quick stop after a
buffer empty condition because the velocity of the last point was different from 0

10 … 7 Reserved

6 … 0 Current integrity counter value

Remark: when a status bit changes from this object, an emergency message with the code 0xFF01 will be generated.
This emergency message will have mapped object 2072h data onto bytes 3 and 4.

The Emergency message contains of 8 data bytes having the following contents:

0-1 2 3-4 5-7

Emergency Error
Code (0xFF01)

Error Register
(Object 1001h)

Interpolated position status
(Object 2072h)

Manufacturer specific error
field

To disable the sending of PVT emergency message with ID 0xFF01, the setup variable PVTSENDOFF must be set to
1.

10.2.4 Object 2073h: Interpolated position buffer length

Through Interpolated position buffer length object you can change the default buffer length. When writing in this
object, the buffer will automatically reset its contents and then re-initialize with the new length. The length of the buffer
is the maximum number of interpolation data that can be queued, and does not mean the number of data locations
physically available.

Remark: It is NOT allowed to write a “0” into this object.
Object description:

Index 2073h

Name Interpolated position buffer length

Object code VAR

Data type UNSIGNED16

Entry description:

Access WO

PDO mapping No

Value range UNSIGNED16

Default value 7

10.2.5 Object 2074h: Interpolated position buffer configuration

Through this object you can control more in detail the behavior of the buffer.

Object description:

Index 2074h

Name
Interpolated position buffer
configuration

Object code VAR

Data type UNSIGNED16

Entry description:

Access WO

PDO mapping No

Value range UNSIGNED16

Default value -

© Technosoft 2024 147 CANopen Programming

Table 10.4 – Interpolated position buffer configuration

Bit Value Description

15
0 Nothing

1 Clear buffer and reinitialize buffer internal variables

14
0 Enable the integrity counter error checking

1 Disable the integrity counter error checking

13
0 No change in the internal integrity counter

1 Change internal integrity counter with the value specified in bits 0 to 6

12

0
If absolute positioning is set (bit 6 of Controlword is 0), the initial position is read
from object 2079h. It is used to compute the distance to move up to the first PVT
point.

1
If absolute positioning is set (bit 6 of Controlword is 0), the initial position is the
current position demand value. It is used to compute the distance to move up to
the first PVT point.

11 ... 8
New parameter for buffer low signaling. When the number of entries in the buffer
is equal or less than buffer low value, bit 14 of object 2072h will set.

7
0 No change in the buffer low parameter

1 Change the buffer low parameter with the value specified in bits 8 to 11

6 … 0 New integrity counter value

10.2.6 Object 2079h: Interpolated position initial position

Through this object, you can set an initial position for absolute positioning in order to be used to compute the distance
to move up to the first point. It is given in position units.

Object description:

Index 2079h

Name Interpolated position initial position

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping Possible

Value range INTEGER32

Default value 0

10.2.7 Object 207Ah: Interpolated position 1st order time

Through this object, you can set the time in a PT (Position – Time) Linear Interpolation mode. By setting a value in this
object, there is no need to send the time together with the position and integrity counter in Object 60C1h: Interpolation
data record. This object is disabled when it is set with 0. It is given in IU which is by default 0.8ms for steppers and 1ms
for the other configurations.

Object description:

Index 207Ah

Name Interpolated position 1st order time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Yes

Value range UNSIGNED16

Default value 0

10.2.8 Loading the interpolated points

The points can be loaded only in Legacy interpolation mode (object 208Eh bit8 must be 0 and its default is 1).

If the integrity counter is enabled, the drive considers and loads a valid IP point when it receives a new valid integrity
counter number. If the drive receives interpolation data with the same integrity number, it will ignore the point and
send an emergency message with the code 0xFF01. If it receives a lower or a +2 higher integrity number, it will ignore
the data and send an emergency message with code 0xFF01 and Object 207Ah: Interpolated position 1st order time
mapped on bytes 4 and 5 showing and integrity counter error. This error will be automatically reset when the data with
correct integrity number will be received. The 7 bit integrity counter can have values between 0 and 127. Therefore,
when the counter reaches the value 127, the next logical value is 0.

© Technosoft 2024 148 CANopen Programming

After receiving each point, the drive calculates the trajectory it has to execute. Because of this, the points must be loaded
after the absolute/relative bit is set in Controlword.

A correct interpolated PT/PVT motion would be like this:

• Enter mode 07 in Modes of Operation

• set the IP (Interpolated Position) buffer size

• Clear the buffer and reinitialize the integrity counter

• Set in Controlword the bit for absolute or relative motion

• If the motion is absolute, set in 2079h the actual position of the drive (read from object 6063h)

• If the motion is PT, set in object 207Ah a fixed time interval if not supplied in 60C1 sub-index2

• Load the first IP points

• Start the motion by toggling from 0 to 1 bit4 in Controlword

• Monitor the interpolated status for buffer low warning (an emergency message will be sent automatically
containing the interpolated status when one of the status bits changes)

• Load more points until buffer full bit is active

• Return to monitoring the buffer status and load points until the profile is finished

10.3 Linear interpolation example

To work with this mode, object 208Eh bit8 must be 1. The default value of this bit is 1, so there is no need to change it.
This example is identical with the Cyclic Synchronous Position Mode example with the following changes:

- the modes of operation 6060h must be set = 7 instead of 8
- object 60C1 sub-index 1 must be used instead of object 607Ah.

All the other commands and behavior is the same.

10.4 PT absolute movement example

Execute an absolute PT movement.

Remarks: Because this is a demo for a single axis, the synchronization mechanism is not used here.

 To work with this mode, object 208Eh bit8 must be 0. The default value of this bit is 1.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Enable the legacy interpolated mode. Set bit 8 of object 208Eh to 0.

Send the following message (SDO access to object 208Eh sub-index 0, 16-bit value 0):

COB-ID Data

606 2B 8E 20 00 00 00 00 00

6. Disable the RPDO3. Write zero in object 1602h sub-index 0, this will disable the PDO.

Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 0):

COB-ID Data

606 2F 02 16 00 00 00 00 00

© Technosoft 2024 149 CANopen Programming

7. Map the new objects.

Write in object 1602h sub-index 1 the description of the interpolated data record sub-index 1:

Send the following message (SDO access to object 1602h sub-index 1, 32-bit value 60C10120h):

COB-ID Data

606 23 02 16 01 20 01 C1 60

Write in object 1602h sub-index 2 the description of the interpolated data record sub-index 2:

Send the following message (SDO access to object 1602h sub-index 2, 32-bit value 60C10220h):

COB-ID Data

606 23 02 16 02 20 02 C1 60

8. Enable the RPDO3. Set the object 1602h sub-index 0 with the value 2.

Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 2):

COB-ID Data

606 2F 02 16 00 02 00 00 00

9. Mode of operation. Select interpolation position mode.

Send the following message (SDO access to object 6060h, 8-bit value 7h):

COB-ID Data

606 2F 60 60 00 07 00 00 00

10. Interpolation sub mode select. Select PT interpolation position mode.

Send the following message (SDO access to object 60C0h, 16-bit value 0000h):

COB-ID Data

606 2B C0 60 00 00 00 00 00

11. Interpolated position buffer length. Set the buffer length to 12. The maximum length is 15.

Send the following message (SDO access to object 2073h, 16-bit value Ch):

COB-ID Data

606 2B 73 20 00 0C 00 00 00

12. Interpolated position buffer configuration. By setting the value A001h, the buffer is cleared and the integrity
counter will be set to 1. Send the following message (SDO access to object 2074h, 16-bit value A001h):

COB-ID Data

606 2B 74 20 00 01 A0 00 00

13. Interpolated position initial position. Set the initial position to 0.5 rotations. By using a 500 lines incremental
encoder the corresponding value of object 2079h expressed in encoder counts is (1000d) 3E8h. By using the
settings done so far, if the final position command were to be 0, the drive would travel to (Actual position –
1000).

Send the following message (SDO access to object 2079h, 32-bit value 03E8h):

COB-ID Data

606 23 79 20 00 E8 03 00 00

14. Send the 1st PT point.

Position= 20000 IU (0x00004E20) 1IU = 1 encoder pulse

Time = 1000 IU (0x03E8) 1IU = 1 control loop = 1ms by default

IC = 1 (0x01) IC=Integrity Counter

The drive motor will do 10 rotations (20000 counts) in 1000 milliseconds.

Send the following message:

COB-ID Data

406 20 4E 00 00 E8 03 00 02

15. Send the 2nd PT point.

Position= 30000 IU (0x00007530)

Time = 2000 IU (0x07D0)

IC = 2 (0x02)

Send the following message:

COB-ID Data

406 30 75 00 00 D0 07 00 04

16. Send the 3rd PT point.

© Technosoft 2024 150 CANopen Programming

Position= 2000 IU (0x000007D0)

Time = 1000 IU (0x03E8)

IC = 3 (0x03)

Send the following message:

COB-ID Data

406 D0 07 00 00 E8 03 00 06

17. Send the last PT point.

Set X1=00000000 h (0 counts); X2=080001F4 (IC=4 (0x08), time =500 (0x01F4))

Position= 0 IU (0x00000000)

Time = 500 IU (0x01F4)

IC = 4 (0x04)

Send the following message:

COB-ID Data

406 00 00 00 00 F4 01 00 08

18. Start an absolute motion.

Send the following message:

COB-ID Data

206 1F 00

After the sequences are executed, if the drive actual position before starting the motion was 0, now it should be -1000
counts because of Step 12.

10.5 PVT absolute movement example

Execute an absolute PVT movement. The PVT position points will be given as absolute positions.

Remarks: Because this is a demo for a single axis the synchronization mechanism is not used here.

To work with this mode, object 208Eh bit8 must be 0. The default value of this bit is 1.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Enable the legacy interpolated mode. Set bit 8 of object 208Eh to 0.

Send the following message (SDO access to object 208Eh sub-index 0, 16-bit value 0):

COB-ID Data

606 2B 8E 20 00 00 00 00 00

6. Disable the RPDO3. Write zero in object 1602h sub-index 0, this will disable the PDO.

Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 0):

© Technosoft 2024 151 CANopen Programming

COB-ID Data

606 2F 02 16 00 00 00 00 00

7. Map the new objects.

a) Write in object 1602h sub-index 1 the description of the interpolated data record sub-index 1:

Send the following message (SDO access to object 1602h sub-index 1, 32-bit value 60C10120h):

COB-ID Data

606 23 02 16 01 20 01 C1 60

b) Write in object 1602h sub-index 2 the description of the interpolated data record sub-index 2:

Send the following message (SDO access to object 1602h sub-index 2, 32-bit value 60C10220h):

COB-ID Data

606 23 02 16 02 20 02 C1 60

8. Enable the RPDO3. Set the object 1602h sub-index 0 with the value 2.

Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 2):

COB-ID Data

606 2F 02 16 00 02 00 00 00

9. Mode of operation. Select interpolation position mode.

Send the following message (SDO access to object 6060h, 8-bit value 7h):

COB-ID Data

606 2F 60 60 00 07 00 00 00

10. Interpolation sub mode select. Select PVT interpolation position mode.

Send the following message (SDO access to object 60C0h, 16-bit value FFFFh):

COB-ID Data

606 2B C0 60 00 FF FF 00 00

11. Interpolated position buffer length. Set the buffer length to 15. The maximum length is 15.

Send the following message (SDO access to object 2073h, 16-bit value Fh):

COB-ID Data

606 2B 73 20 00 0F 00 00 00

12. Interpolated position buffer configuration. By setting the value B000h, the buffer is cleared and the integrity
counter will be set to 0.

Send the following message (SDO access to object 2074h, 16-bit value B000h):

COB-ID Data

606 2B 74 20 00 00 B0 00 00

13. Send the 1st PVT point.

Position = 88 IU (0x000058) 1IU = 1 encoder pulse

Velocity = 3.33 IU (0x000354) 1IU = 1 encoder pulse/ 1 control loop

Time = 55 IU (0x37) 1IU = 1 control loop = 1ms by default

IC = 0 (0x00) IC=Integrity Counter

Send the following message:

COB-ID Data

406 58 00 54 00 03 00 37 00

14. Send the 2nd PVT point.

Position = 370 IU (0x000172)

Velocity = 6.66 IU (0x0006A8)

Time = 55 IU (0x37)

IC = 1 (0x01)

Send the following message:

COB-ID Data

406 72 01 A8 00 06 00 37 02

15. Send the 3rd PVT point.

Position = 2982 IU (0x000BA6)

© Technosoft 2024 152 CANopen Programming

Velocity = 6.66 IU (0x0006A8)

Time = 390 IU (0x186)

IC = 2 (0x02)

Send the following message:

COB-ID Data

406 A6 0B A8 00 06 00 86 05

16. Send the 4th PVT point.

Position = 5631 IU (0x0015FF)

Velocity = 6.66 IU (0x0006A8)

Time = 400 IU (0x190)

IC = 3 (0x03)

Send the following message:

COB-ID Data

406 FF 15 A8 00 06 00 90 07

17. Send the 5th PVT point.

Position = 5925 IU (0x001725)

Velocity = 3.00 IU (0x000300)

Time = 60 IU (0x3C)

IC = 4 (0x04)

Send the following message:

COB-ID Data

406 25 17 00 00 03 00 3C 08

18. Send the 6th PVT point.

Position = 6000 IU (0x001770)

Velocity = 0.00 IU (0x000000)

Time = 50 IU (0x32)

IC = 5 (0x05)

Send the following message:

COB-ID Data

406 70 17 00 00 00 00 32 0A

19. Send the 7th PVT point.

Position = 5127 IU (0x001407)

Velocity = -7.5 IU (0xFFF880)

Time = 240 IU (0xF0)

IC = 6 (0x06)

Send the following message:

COB-ID Data

406 07 14 80 00 F8 FF F0 0C

20. Send the 8th PVT point.

Position = 3115 IU (0x000C2B)

Velocity = -13.33 IU (0xFFF2AB)

Time = 190 IU (0xBE)

IC = 7 (0x07)

Send the following message:

COB-ID Data

406 2B 0C AB 00 F2 FF BE 0E

21. Send the 9th PVT point.

Position = -1686 IU (0xFFF96A)

© Technosoft 2024 153 CANopen Programming

Velocity = -13.33 IU (0xFFF2AB)

Time = 360 IU (0x168)

IC = 8 (0x08)

Send the following message:

COB-ID Data

406 6A F9 AB FF F2 FF 68 11

22. Send the 10nth PVT point.

Position = -7145 IU (0xFFE417)

Velocity = -13.33 IU (0xFFF2AB)

Time = 410 IU (0x19A)

IC = 9 (0x0A)

Send the following message:

COB-ID Data

406 17 E4 AB FF F2 FF 9A 13

23. Send the 11th PVT point.

Position = -9135 IU (0xFFDC51)

Velocity = -7.4 IU (0xFFF899)

Time = 190 IU (0xBE)

IC = 10 (0x0A)

Send the following message:

COB-ID Data

406 51 DC 99 FF F8 FF BE 14

24. Send the 12th PVT point. The last.

Position = -10000 IU (0xFFD8F0)

Velocity = 0 IU (0x000000)

Time = 240 IU (0xF0)

IC = 11 (0x0B)

Send the following message:

COB-ID Data

406 F0 D8 00 FF 00 00 F0 16

25. Start an absolute motion.

Send the following message:

COB-ID Data

206 1F 00

The PVT motion should be like the one below.

The motor should rotate 3 positive rotations and another 8 negatively (for a 500 lines encoder). If the initial position
before the motion was 0, the final position should be -10000 IU (-5 rotations). All points should be executed within 2.64s,
considering the default time base is 1ms.

© Technosoft 2024 154 CANopen Programming

10.6 PVT relative movement example

Execute a relative PVT movement. The PVT position points will be given as a difference between next and last position.

Remarks: Because this is a demo for a single axis the synchronization mechanism is not used here.

To work with this mode, object 208Eh bit8 must be 0. The default value of this bit is 1.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Enable the legacy interpolated mode. Set bit 8 of object 208Eh to 0.

Send the following message (SDO access to object 208Eh sub-index 0, 16-bit value 0):

COB-ID Data

606 2B 8E 20 00 00 00 00 00

6. Disable the RPDO3. Write zero in object 1602h sub-index 0, this will disable the PDO.

Send the following message (SDO access to object 1602h sub-index 0, 8-bit value 0):

COB-ID Data

606 2F 02 16 00 00 00 00 00

7. Map the new objects.

a) Write in object 1602h sub-index 1 the description of the interpolated data record sub-index 1:

Send the following message (SDO access to object 1602h sub-index 1, 32-bit value 60C10120h):

COB-ID Data

606 23 02 16 01 20 01 C1 60

b) Write in object 1602h sub-index 2 the description of the interpolated data record sub-index 2:

Send the following message (SDO access to object 1602h sub-index 2, 32-bit value 60C10220h):

COB-ID Data

606 23 02 16 02 20 02 C1 60

8. Enable the RPDO3. Set the object 1602h sub-index 0 with the value 2.

Send the following message (SDO access to object 1601h sub-index 0, 8-bit value 2):

COB-ID Data

606 2F 02 16 00 02 00 00 00

9. Mode of operation. Select interpolation position mode.

Send the following message (SDO access to object 6060h, 8-bit value 7h):

COB-ID Data

606 2F 60 60 00 07 00 00 00

10. Set the relative motion bit. Set in Controlword mapped in RPDO1 the value 4Fh. For an absolute motion, set
0Fh but the example points will not apply.

Remark: if the relative motion bit is not set in Controlword before the PVT points are loaded, the trajectory will not
be calculated correctly.

Send the following message:

© Technosoft 2024 155 CANopen Programming

COB-ID Data

206 4F 00

11. Interpolation sub mode select. Select PVT interpolation position mode.

Send the following message (SDO access to object 60C0h, 16-bit value FFFFh):

COB-ID Data

606 2B C0 60 00 FF FF 00 00

12. Interpolated position buffer length. Set the buffer length to 12. The maximum length is 15.

Send the following message (SDO access to object 2073h, 16-bit value Ch):

COB-ID Data

606 2B 73 20 00 0C 00 00 00

13. Interpolated position buffer configuration. By setting the value A001h, the buffer is cleared and the integrity
counter will be set to 1. Send the following message (SDO access to object 2074h, 16-bit value A001h):

COB-ID Data

606 2B 74 20 00 01 A0 00 00

14. Interpolated position initial position. Set the initial position to 0 rotations. The object should receive the
drives actual position in Internal Units which can be read from object 6063h or 6062h when using steppers in
open loop.

Send the following message (SDO access to object 2079h, 32-bit value 0h):

COB-ID Data

606 23 79 20 00 00 00 00 00

15. Send the 1st PVT point.

Position = 400 IU (0x000190) 1IU = 1 encoder pulse

Velocity = 3.00 IU (0x000300) 1IU = 1 encoder pulse/ 1 control loop

Time = 250 IU (0xFA) 1IU = 1 control loop = 1ms by default

IC = 1 (0x01) IC=Integrity Counter

Send the following message:

COB-ID Data

406 90 01 00 00 03 00 FA 02

16. Send the 2nd PVT point.

Position = 1240 IU (0x0004D8)

Velocity = 6.00 IU (0x000600)

Time = 250 IU (0xFA)

IC = 2 (0x02)

Send the following message:

COB-ID Data

406 D8 04 00 00 06 00 FA 04

17. Send the 3rd PVT point.

Position = 1674 IU (0x00068A)

Velocity = 6.00 IU (0x000600)

Time = 250 IU (0xFA)

IC = 3 (0x03)

Send the following message:

COB-ID Data

406 8A 06 00 00 06 00 FA 06

18. Send the 4th PVT point.

Position = 1666 IU (0x000682)

Velocity = 6.00 IU (0x000600)

Time = 250 IU (0xFA)

IC = 4 (0x04)

Send the following message:

COB-ID Data

406 82 06 00 00 06 00 FA 08

© Technosoft 2024 156 CANopen Programming

19. Send the 5th PVT point.

Position = 1240 IU (0x0004D8)

Velocity = 3.00 IU (0x000300)

Time = 250 IU (0xFA)

IC = 5 (0x05)

Send the following message:

COB-ID Data

406 D8 04 00 00 03 00 FA 0A

20. Send the last PVT point.

Position = 410 IU (0x00019A)

Velocity = 0.00 IU (0x000000)

Time = 250 IU (0xFA)

IC = 6 (0x06)

Send the following message:

COB-ID Data

406 9A 01 00 00 00 00 FA 0C

21. Start a relative motion.

Send the following message:

COB-ID Data

206 5F 00

The PVT motion should be like the one below.

If the initial position before the motion was 0, the final position should be 6630 IU (3.315 rotation for a 500line encoder).
All points should be executed in 1.5s, considering the default time base is 1ms.

© Technosoft 2024 157 CANopen Programming

11 Cyclic Synchronous Position mode (CSP)

11.1 Overview

The overall structure for this mode is shown in Figure 10.1.1. With this mode, the trajectory generator is located in the
control device, not in the drive device. In cyclic synchronous manner, it provides a target position to the drive device,
which performs position control, velocity control and torque control. Measured by sensors, the drive provides actual
values for position, velocity and torque to the control device.

Figure 11.1.1. Cyclic synchronous position mode overview

The Target Position for the CSP mode may be received into object 607Ah or into object 60C1h sub-index 01.

11.1.1 Controlword in Cyclic Synchronous Position mode (CSP)

 MSB LSB

See
6040h

Halt
See
6040h

Abs / rel Reserved Reserved See 6040h

15 9 8 7 6 5 4 3 0

Table 11.1 – Controlword bits description for Cyclic Synchronous Position Mode

Name Value Description

Abs / rel
0 Absolute position mode

1 Relative position mode

In Absolute position mode, the drive will always travel to the absolute position given to object 607Ah . This is the standard
mode.

In Relative position mode, the drive will add to its current position the value received in object 607Ah. By sending this
value periodically and setting the correct interpolation period time in object 60C2h, it will be like working in Cyclic
Synchronous Velocity mode (CSV).

11.1.2 Statusword in Cyclic Synchronous Position mode (CSP)

MSB LSB

See 6041h
Following
error

Target position
ignored

See 6041h Reserved See 6041h

15 14 13 12 11 10 9 0

Table 11.2 – Statusword bit description for Cyclic Synchronous Position mode

Name Value Description

Bit 10
0 Reserved

1 Reserved

Target
position
ignored

0 Target position ignored

1 Target position shall be used as input to position control loop

Following
error

0 No following error

1 Following error occurred

© Technosoft 2024 158 CANopen Programming

11.2 Cyclic Synchronous Position Mode Objects

11.2.1 Object 60C2h: Interpolation time period

The Interpolation time period indicates the configured interpolation cycle time. Its value must be set with the time
value of the CANopen master communication cycle time and sync time in order for the Cyclic Synchronous Position
mode to work properly. The interpolation time period (sub-index 01h) value is given in 10(interpolation time index) s(second).
The interpolation time index (sub-index 02h) is dimensionless.

Example: to set a communication cycle time of 2ms, 60C2h sub-index 01h = 2 and 60C2h sub-index 02h = -3. The result
is 2ms = 2*10-3.

Remark: The CSP cycle time is naturally limited by the bandwidth of the CAN bus (and thus by the number of drive
controllers connected to the CAN network) and by how precisely the higher-level master controller performs the
synchronization. The minimum recommended value is 2 ms. Please contact Technosoft for more information.

Object description:

Index 60C2h

Name Interpolation time period

Object code ARRAY

Number of elements 2

Data Type Interpolation time period record

Entry description:

Sub-index 00h

Description Number of sub-indexes

Access RO

PDO mapping No

Default value 2

Sub-index 01h

Description Interpolation time period value

Access RW

PDO mapping Possible

Value range Unsigned8

Default value 2

Sub-index 02h

Description Interpolation time index

Access RW

PDO mapping Possible

Value range INTEGER8, (-128 to +63)

Default value -3

11.2.2 Object 2086h: Limit speed for CSP 19F

1

This object is used to set a maximum velocity during CSP mode of operation.

Object description:

Index 2086h

Name Limit speed/acceleration for CSP

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0000h

If 2086h = 1, the limit is active. During CSP mode, the maximum velocity will be the one defined in object 6081h.

Remark: If 6081h = 0 and 2086h =1, during CSP mode, the motor will not move when it receives new position commands
because its maximum velocity is limited to 0.

1 Available only with firmware versions F514x and FA01x.

© Technosoft 2024 159 CANopen Programming

11.3 Cyclic Synchronous Position Mode example

Short description of the example:
- Start the node
- Remap RPDO1 and set it as synchronous
- Remap TPDO1 and set it as synchronous
- Set CSP mode in Modes of Operation
- Set Operation Enable. The handshake between what is commanded into Controlword and what is read from
Statusword will be described in detail
- Send a typical CSP motion command.

Step 1 starts the remote node 6, which means the PDOs will be enabled.
1. Start remote node. Send an NMT message to start the node id 06.

Send the following message:

COB-ID Data

0 01 06

 Remark: if 00 is sent instead of 06, all nodes in the network will be enabled.
Steps 2 and 3 set the interpolation time to 2ms.
The interpolation time needs to be set in the object 60C2h. Sub-index 1 holds the interpolation time period value

(i.e. 2 for 2ms) and sub-index 2 holds the interpolation time index (i.e. -3 for ms = 10^-3 s).
The interpolation time has to be equal to the SYNC period and the period of the synchronous RPDO containing the

position command.
2. Interpolation time period value. Set the interpolation time value to 2 (0x02).

Send the following message (SDO write access to object 60C2h sub-index 1 the 8-bit value 02h):

COB-ID Data

606 2F C2 60 01 02

3. Interpolation time index. Set the interpolation time index value to -3 (0xFD).
Send the following message (SDO write access to object 60C2h sub-index 2 the 8-bit value FDh):

COB-ID Data

606 2F C2 60 02 FD

Steps 4 to 7 remap RPDO1 to receive Controlword (6040h, 16bit) and Target Position (607Ah, 32bit).
4. Disable RPDO1 mapping. To reconfigure any RPDO mapping, sub-index 0 of the corresponding mapping

parameter object must be set to 0 in order to disable the PDO mapping.
Send the following message (SDO write access to object 1600h sub-index 0 the 8-bit value 00h):

COB-ID Data

606 2F 00 16 00 00

5. Map Controlword 6040h to RPDO1 sub-index 1.
Send the following message (SDO write access to object 1600h sub-index 1 the 32-bit value 60400010h):

COB-ID Data

606 23 00 16 01 10 00 40 60

6. Map Target Position 607Ah to RPDO1 sub-index 2.
Send the following message (SDO write access to object 1600h sub-index 2 the 32-bit value 607A0020h):

COB-ID Data

606 23 00 16 02 20 00 7A 60

Remark: instead of 607Ah, object 60C1h sub-index 01 may also be mapped to receive the same position command.
In this case, 60C10120h must be written to sub-index 2 of object 1600h.
7. Enable RPDO1 mapping. To enable any RPDO mapping, sub-index 0 of the corresponding mapping

parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.
Send the following message (SDO write access to object 1600h sub-index 0 the 8-bit value 02h):

COB-ID Data

606 2F 00 16 00 02

Steps 8 to 10 set RPDO1 as synchronous.
8. Disable RPDO1. To change any RPDO Communication parameters, sub-index 1 bit 31 must be set. It is

recommended that only bit 31 is set and the number already defined inside should be kept.
Example: the sub-index 1 value is 0x206 which is the RPDO1 COB ID for axis 6 (0x200 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x206, 0x80000206 should be written.

Send the following message (SDO write access to object 1400h sub-index 1 the 32-bit value 80000206h):

COB-ID Data

606 23 00 14 01 06 02 00 80

9. Set RPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. RPDO1
data will be processed after the reception of each SYNC.

Send the following message (SDO write access to object 1400h sub-index 2 the 8-bit value 01h):

COB-ID Data

606 2F 00 14 02 01

10. Enable RPDO1. To enable a RPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the RPDO1 of axis 6, the COB ID should be (0x200 + axis ID). It means 0x206 should be written.

Send the following message (SDO write access to object 1400h sub-index 1 the 32-bit value 00000206h):

COB-ID Data

© Technosoft 2024 160 CANopen Programming

606 23 00 14 01 06 02 00 00

Steps 11 to 14 remap TPDO1 to send Statusword (6041h, 16bit) and Position actual value (6064h, 32bit).
11. Disable TPDO1 mapping. To reconfigure any TPDO mapping, sub-index 0 of the corresponding mapping

parameter object must be set to 0 in order to disable the PDO mapping.
Send the following message (SDO write access to object 1A00h sub-index 0 the 8-bit value 00h):

COB-ID Data

606 2F 00 1A 00 00

12. Map Statusword 6041h to TPDO1 sub-index 1.
Send the following message (SDO write access to object 1A00h sub-index 1 the 32-bit value 60410010h):

COB-ID Data

606 23 00 1A 01 10 00 41 60

13. Map Position actual value 6064h to TPDO1 sub-index 2.
Send the following message (SDO write access to object 1A00h sub-index 2 the 32-bit value 60640020h):

COB-ID Data

606 23 00 1A 02 20 00 64 60

14. Enable TPDO1 mapping. To enable any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1A00h sub-index 0 the 8-bit value 02h):

COB-ID Data

606 2F 00 1A 00 02

Steps 15 to 17 set TPDO1 as synchronous.
15. Disable TPDO1. To change any TPDO Communication parameters, sub-index 1 bit 31 must be set. It is

recommended that only bit 31 is set and the number already defined inside should be kept.
Example: the sub-index 1 value is 0x186 which is the TPDO1 COB ID for axis 6 (0x180 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x186, 0x80000186 should be written.

Send the following message (SDO write access to object 1800h sub-index 1 the 32-bit value 80000186h):

COB-ID Data

606 23 00 18 01 86 01 00 80

16. Set TPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. TPDO1
data is updated when the SYNC is received, and then TPDO1 is sent as soon as possible.

Send the following message (SDO write access to object 1800h sub-index 2 the 8-bit value 01h):

COB-ID Data

606 2F 00 18 02 01

17. Enable TPDO1. To enable a TPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the TPDO1 of axis 6, the COB ID should be (0x180 + axis ID). It means 0x186 should be written.

Send the following message (SDO write access to object 1800h sub-index 1 the 32-bit value 00000186h):

COB-ID Data

606 23 00 18 01 86 01 00 00

Step 18 sets CSP mode into the Modes of operation object.
18. Set modes of operation to CSP. Write 0x08 into object 6060h to set the drive into CSP mode.
Remark: the drive will be in CSP mode only after in reaches the state Operation Enabled. This means that object
6061h (Modes of operation display) will show 8 (drive is in CSP mode), only after Operation Enabled has been
reached.

Send the following message (SDO write access to object 6060h sub-index 0 the 8-bit value 08h):

COB-ID Data

606 2F 60 60 00 08

Steps 19 to 21 bring the drive into Operation enabled state and also start the CSP mode motion.
Remark 1: from this point on, the master should send the SYNC messages at precisely 2ms (the same number
defined in 60C2h). Transmission of RPDO1 should also be started by the master.
Remark 2: the SYNC message is usually configured at the CANopen master start-up and can be sent from the
drive boot-up time. The configuration messages until this point can be sent in parallel with the SYNC messages.
Only after all the PDOs are configured as synchronous, the drive will use the SYNC signal for the PDOs.
19. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.
Send the following message (SYNC)

COB-ID Data

80 Null

 This was the SYNC signal. It must be sent at precisely 2ms intervals. In this example it can also be sent
manually, to understand each command and what it does.
Send the following message (RPDO1)

COB-ID Data

206 06 00 00 00 00 00

 The 0006 is the new value for Controlword, i.e. the command to enter Ready to switch on state.
 The 00000000 is the position command.
Send the following message (SYNC)

COB-ID Data

80 Null

 This was the SYNC signal. It must be sent at precisely 2ms intervals.

© Technosoft 2024 161 CANopen Programming

 After each SYNC signal, the drive will send its TPDO1. To be able to change the next Controlword command
in RPDO1, ensure that the drive reaches Ready to switch on state by waiting for the TPDO1 with the following
content:

Wait to receive the following message (TPDO1)

COB-ID Data

186 31 02 00 00 00 00

The 0231 is the Statusword value. The value xx31h shows that the drive reached Ready to switch on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there are
also intermediary values)
The 00000000 is the Position actual value and can vary depending on the encoder reported position.
Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.
20. Switch on. Change the node state from Ready to switch on to Switched on by sending the switch on command

via Controlword associated PDO.
Send the following message (SYNC)

COB-ID Data

80 Null

This was the SYNC signal. It must be sent at precisely 2ms intervals.
Send the following message (RPDO1)

COB-ID Data

206 07 00 00 00 00 00

The 0007 is the new value for Controlword, i.e. the command to enter Switched on state.
Send the following message (SYNC)

COB-ID Data

80 Null

This was the SYNC signal. It must be sent at precisely 2ms intervals.
 After each SYNC signal, the drive will send its TPDO1. To be able to change the next Controlword command
in RPDO1, ensure that the drive reaches Switched on state by waiting for the TPDO1 with the following content:

Wait to receive the following message (TPDO1)

COB-ID Data

186 33 82 00 00 00 00

The 8233 is the Statusword value. The value xx33h shows that the drive reached Switched on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).
At this step, the drive starts applying power to the motor. The time to reach Switched on state depends on the
motor initialization method and its parameters (the Start method as defined in the Setup part in EasyMotion
Studio II). Initialization times of up to 2s are not uncommon.

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

After the drive reaches Switched On state, the master can continue to the next step.
21. Enable operation. Change the node state from Switched on to Operation enabled by sending the Enable

operation command via Controlword associated PDO.
Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 2ms intervals.
Send the following message (RPDO1)

COB-ID Data

206 0F 00 00 00 00 00

The 000F is the command to enter Operation enable state in Controlword.
Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 2ms intervals.
 After each SYNC signal, the drive will send its TPDO1. Ensure that the drive reaches Operation enabled state
by waiting for the TPDO1 with the following content:

Wait for the following message (TPDO1)

COB-ID Data

186 37 96 00 00 00 00

The 9637 is the Statusword value. The value xx37h shows that the drive reached Operation enable state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).
From this step forward, the motor will execute a motion within 2ms to the absolute position given into RPDO1
as the Target position.

Step 22 describes a CSP motion command:
22. Move to 100 IU. Set the position command to 100 IU.

© Technosoft 2024 162 CANopen Programming

Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 2ms intervals. The drive will process the previously
received RPDO immediately after the reception of the SYNC.

Send the following message (RPDO1)

COB-ID Data

206 0F 00 64 00 00 00

 The 000F is the command to enter or remain in Operation enabled state in Controlword.
 The 00000064 is the position command (=100 in decimal).
Send the following message (SYNC)

COB-ID Data

80 null

 After this SYNC, the motor will start to travel to the absolute position 100 over the following 2ms. The drive also
sends the TPDO1 reporting the position of the motor sampled at the SYNC reception.

The master then needs to cyclically send the SYNC and RPDO1 with updated position commands.

11.4 Configuring Technosoft CANopen Drives for NC-PTP (CSP) operation in TwinCAT 3

11.4.1 Create a new project and scan for the drives

Start the TwinCAT 3 XAE programming environment and create a new project.

Choose your target system where the CANopen interface is located.

In Solution Explorer, expand the I/O section, right-click on devices and choose Scan.

Depending on the available devices, select only the CAN interface and click OK.

© Technosoft 2024 163 CANopen Programming

A scan for boxes prompt will appear. Click Yes to find the available CAN drives.

Another prompt appears for baudrate selection. Select the used baudrate and click OK.

Remark: the default baudrate for all Technosoft drives is 500 kbps if not defined otherwise in the Setup part.

A scan progress bar will show how many nodes are found. Wait for it to finish, or just click cancel if all the nodes are
detected.

Remark: on the example test system, the first scan does not find any drive. They are found on the second scan.

The new found nodes will be available in the Devices area. The Box number is actually the found CAN ID number.

Remark: The CANopen ID number is the same as the Technosoft AxisID number that can be defined in the Setup part..

11.4.2 Setting the Sync-TxPDO Delay

In the Solution Explorer, click on the device with the CAN interface. Select the CAN interface configuration tab and
select at Sync-Tx-PDO Delay a higher number than 30%. On some systems, if the time difference between the Sync
message (sent by the master) and the Synchronous TxPDO (sent by the drive) exceeds x% of the communication time,
TwinCAT considers it as an error, power off the drive and restarts it again. By increasing this time, such sudden power
offs will be avoided.

Remark: on the test system, the value of 80% eliminated all issues. On another system, the value of 80% cause the
remote device not to communicate anymore. Choose the highest value while being still able to communicate with the
CAN nodes.

© Technosoft 2024 164 CANopen Programming

11.4.3 Adding new Nc-PTP axes

Right Click MOTION and choose add new item... .

A new prompt will come up. Choose the NC/PTP NCI Configuration and click OK.

Right Click Axes under the NC-Task and choose the Add New Item...

A new prompt will come up. Click OK to add the axis.

If more axis need to be defined, they can be copy-pasted later, after more setting are done.

11.4.4 NC-PTP Axis settings

Click the Axis 1, choose the settings tab and select under Axis Type, the CANopen DS402... type.

© Technosoft 2024 165 CANopen Programming

Under the same settings, you can choose the motor units like mm or geometrical degrees.

Select the parameters tab and set the Position Lag Monitoring to FALSE. This is a TwinCAT protection that monitors
the difference between the motor actual position and commanded position. This protection is already present in the
Technosoft drive as the Control Error setting, which often is more precise and quicker to react, because the drive internal
clock (default 1ms) is usually faster than the CAN communication cycle times (min 2ms). When the drive detects a
control error, it will enter Fault state and TwinCAT will stop normal operation.

Under NC Task/ Axes / Axis 1/, click the Enc and then choose the Parameter tab on the right hand side.

Because the example uses a rotary motor, write 360 in the Scaling Factor Numerator field. 360 stands for mechanical
degrees. In the Scaling Factor Denominator, write 2000 or whatever value it takes in encoder increments for one full
motor rotation. In the example case, a 500 lines quadrature encoder was used, resulting in 2000 encoder increments
for one motor rotation.

If using a Stepper Open Loop without a feedback, set the denominator to the entire number of microsteps it takes to do
one full motor rotation. In addition, in case there is no feedback available, map object 6062h instead of 6064h (see later
mapping explanations).

11.4.5 Setting the CAN communication cycle time

Click the NC-Task and select the CAN communication cycle time. In this example, a 4ms cycle time was chosen. It is
not recommended to use more than 4 drives at 1Mbit baud and 2ms cycle time. If more drives are present, more CAN
data will fill up the bandwidth and some messages might be lost. More performance tests should be done carefully if the
communication settings are tougher.

© Technosoft 2024 166 CANopen Programming

11.4.6 Configuring the TwinCAT PDO layout

 and

Expand Box 1 and click on RxPDO 4. Press the delete key or choose Edit/ Remove, to delete RxPDO4. Do the same
for RxPDO3, 2 and TxPDO2. Leave only TxPDO1 and RxPDO1 active. The less PDO data is active, the less data will
be transmitted on CAN and more drives can be added to the network while keeping a low communication cycle time.

Expand the Inputs under TxPDO1 and remove the VarIn-0. Also, remove the VarOut-0 from the RxPDO1.

Right Click Inputs and choose Add New Item... .

Select UINT (2 byte size), name it Statusword and set the Start Address 0. Click OK.

Add another item under Inputs. Select DINT (4 byte size), name it Position actual value and set the Start Address 2.
Click OK. This means that the 4 byte position actual value will be found starting with byte 2 of the TxPDO1 data.

© Technosoft 2024 167 CANopen Programming

 (This step is optional) Add another item under Inputs. Select USINT (1 byte size), name it Digital Inputs Status 8bit and
set the Start Address 6. Click OK. This means that the 1byte Digital inputs status object will be found starting with byte
6 of the TxPDO1 data.

Add an item in RxPDO1 under Outputs. Select UINT (2 byte size), name it Controlword and set the Start Address 0.
Click OK.

Add another item under Outputs. Select DINT (4 byte size), name it Target Position and set the Start Address 2. Click
OK. This means that the 4byte Target position will be found starting with byte 2 of the RxPDO1 data.

© Technosoft 2024 168 CANopen Programming

11.4.6.1 Setting the PDOs as synchronous

Click TxPDO1 and select the PDO tab on the right side.
Set the Trans. type to 1 (cyc, sync). This setting will
make TxPDO1 synchronous with every sync message.

Click RxPDO1 and select the PDO tab on the right side.
Set the Trans. type to 1 (cyc, sync). This setting will
make RxPDO1 synchronous with every sync message.

11.4.7 Adding start-up SDO drive configuration messages

11.4.7.1 Mapping objects to RxPDO1

Select Box1; Select the SDOs tab and then click the Append... button to add configuration SDOs. This SDO list will be
sent every time the master starts, or it detects that the drive was reset.

First set index 1600h, sub-index 0x0, Length 1, Value 0. Sub-index 0 of object 1600h represents how many objects are
mapped in RxPDO1. To be able to define(map) any object, first, sub-index 0 must be set to 0.

Click the Append.. button to add another SDO.

Set index 1600h, sub-index 0x1, Length 4, Hex Value 0x60400010; This command will map object 6040h (Controlword)
to sub-index 1 of object 1600h (RxPDO1) and will represent the first 2 bytes of RxPDO1 data. The length is 4 bytes,
because sub-index 1..to 8 of object 1600h is 4 bytes long. The data 0x60400010 represents the following: 6040 is the
mapped object; 00 is the sub-index of the mapped object; 10 is the hex value (16 decimal) of the length in bits of the

© Technosoft 2024 169 CANopen Programming

mapped object sub-index. If it was a 32bit sub-index, it would have been 20. If it was an 8bit sub-index, it would have
been 08.

In any Tx or RxPDO, up to 64bit of data can be mapped. This means that all the objects lengths mapped into one PDO
must not exceed 64bits (8bytes) of data.

For example, one PDO can support: 1x16 bit object + 1x32bit object + 1x8 bit object + 1x8 bit object.

Click the Append.. button to add another SDO.

Set index 1600h, sub-index 0x2, Length 4, Hex Value 0x607A0020; This command will map object 607Ah (Target
Position) to sub-index 2 of object 1600h (RxPDO1) and will represent the next 4 bytes of RxPDO1 data after the ones
occupied by sub-index 1. The data 0x607A0020 represents the following: 607A is the mapped object; 00 is the sub-
index of the mapped object; 20 is the hex value (32 decimal) of the length in bits of the mapped object sub-index.

Click the Append.. button to add another SDO.

Set index 1600h, sub-index 0x0, Length 1, Value 2. This command will enable the RxPDO1 mapping. Value is set to 2
because two sub-indexes were defined in object 1600h.

11.4.7.2 Mapping objects to TxPDO1

Click the Append.. button to add another SDO.

Set index 1A00h, sub-index 0x0, Length 1, Value 0. Sub-index 0 of object 1A00h represents how many objects are
mapped in TxPDO1. To be able to define(map) any object, first, sub-index 0 must be set to 0.

Click the Append.. button to add another SDO.

Set index 1A00h, sub-index 0x1, Length 4, Hex Value 0x60410010; This command will map object 6041h (Statusword)
to sub-index 1 of object 1A00h (TxPDO1) and will represent the first 2 bytes of TxPDO1 data. The data 0x60410010
represents the following: 6041 is the mapped object; 00 is the sub-index of the mapped object; 10 is the hex value (16
decimal) of the length in bits of the mapped object sub-index.

Click the Append.. button to add another SDO.

Set index 1A00h, sub-index 0x2, Length 4, Hex Value 0x60640020; This command will map object 6064h (Position
Actual Value) to sub-index 2 of object 1A00h (TxPDO1) and will represent the next 4 bytes of TxPDO1 data after the
ones occupied by sub-index 1. The data 0x60640020 represents the following: 6064 is the mapped object; 00 is the
sub-index of the mapped object; 20 is the hex value (32 decimal) of the length in bits of the mapped object sub-index.

© Technosoft 2024 170 CANopen Programming

 (This step is optional) Click the Append.. button to add another SDO.

Set index 1A00h, sub-index 0x3, Length 4, Hex Value 0x208F0108; This command will map object 208Fh (Digital inputs
status 8bit) to sub-index 3 of object 1A00h (TxPDO1) and will represent the next 1x byte of TxPDO1 data after the ones
occupied by sub-index 2. The data 0x208F0108 represents the following: 208F is the mapped object; 01 is the sub-
index of the mapped object; 08 is the hex value (8 decimal) of the length in bits of the mapped object sub-index.

This object is a shorter version of the standard object 60FDh Digital Inputs Status. Sub-index 1 of 208Fh represents the
first 8 bits of 60FDh. The role of using 208Fh instead of 60FDh is to reduce the number of bits that will be sent over CAN.
The drive digital inputs can be later used for the homing procedure.

Click the Append.. button to add another SDO.

Set index 1A00h, sub-index 0x0, Length 1, Value 3. This command will enable the TxPDO1 mapping. Value is set to 3
because three sub-indexes were defined in object 1A00h. If the third sub-index in 1A00h is not needed, then sub-index
0 should be set with the value 2.

11.4.7.3 Setting Modes of Operation to CSP mode

Click the Append.. button to add another SDO.

Set index 6060h, sub-index 0x0, Length 1, Value 8. This command will set object 6060h (Modes of Operation) with the
value 8 which is Cyclic Synchronous Position mode.

11.4.7.4 Setting the interpolation object

Click the Append.. button to add another SDO.

Set index 60C2h, sub-index 0x2, Length 1, Hex Value 0xFD. This command will set object 60C2h, sub-index 2
(Interpolation time Period index) with the value 0xFD or decimal -3 because it is a short integer type. A -3 value means
milliseconds.

Click the Append.. button to add another SDO.

Set index 60C2h, sub-index 0x1, Length 1, Value 4. This command will set object 60C2h, sub-index 1 (Interpolation time
Period value) with the value 4 which will mean 4ms. Because the example is set at 4ms, sub-index 1 is set at 4. If the
CAN communication cycle has another value, then sub-index 1 must be set with that value.

© Technosoft 2024 171 CANopen Programming

The interpolation time must always represent 1x or multiples of the drive slow loop time which is set by default to 1ms.

11.4.7.5 Setting object 1006h to 0; Synchronization issue workaround

(This step is optional) On F508J/F509J and F514D firmware, if object 1006h receives a non-zero value, the drive will
not synchronize when receiving sync messages. TwinCAT automatically sets this object to a non-zero value without
being able to stop this behavior. A workaround is to set an SDO to write 0 again in 1006h. If the firmware on the
Technosoft drive is newer than the ones mentioned, this step is no longer necessary.

Click the Append.. button to add another SDO.

Set index 1006h, sub-index 0x0, Length 4, Value 0.

11.4.8 Linking drive PDO data variables to internal NC-PTP variables

11.4.8.1 Linking standard NC-PTP variables

In Box1/ TxPDO1/ Inputs/, double click the Statusword variable, or right click and select change link. A new window
called “Attach Variable Statusword” will appear. On the right hand side, select All types. Under NC-Task, Axis 1, Drive,
select the nState1 variable and click OK.

A new window will appear, because a 16 bit variable will be linked over an 8 bit variable. Leave the settings as they are
and click OK.

Once a variable is linked, it will have a small arrow icon in front of it. The link can be changed, deleted or view the other
linked variable by using the right click mouse menu.

© Technosoft 2024 172 CANopen Programming

In Box1/ TxPDO1/ Inputs/, double click the Position Actual Value variable. Under NC-Task, Axis 1, Enc, select the
nDataIn1 variable and click OK. Because both variables are 32bit, they will link directly.

In Box1/ RxPDO1/ Outputs/, double click the Controlword variable. Under NC-Task, Axis 1, Drive, select the nCtrl1
variable and click OK. The Show Variables/ All Types should be checked.
In the new menu that appears, just click OK.

In Box1/ RxPDO1/ Outputs/, double click the Target Position variable. Under NC-Task, Axis 1, Drive, select the
nDataOut1 variable and click OK.

11.4.8.2 Linking the home input IN0 to the HomingSensor of the NC-PTP interface

© Technosoft 2024 173 CANopen Programming

Under NC-Task/ Axis 1/ Inputs/ FromPlc/ ControlDWord/, double click the HomingSensor variable to link it. In the menu
that appears, select All types on the right hand side. Link it to Digital Inputs Status 8bit variable.

A new menu will appear. The bool (1bit) variable HomingSensor should be linked only with 1 bit from the Digital Inputs
Status 8bit. Select Offset=2. Bit 2 is the Home Switch (or IN0) in object 60FDh or 208Fh sub-index 1. Click OK.

11.4.9 Enabling and testing the NC-PTP interface in TwinCAT

To test the NC-PTP interface, click the Activate configuration button, and then click OK twice to the new questions that
appear.

To enable PWM power to the motor, click Axis 1 under the NC Task, select the Online tab and click on the Set button.
Click on the All button in the Set Enabling menu.

If everything is OK, the motor should apply torque and hold its position.

Press F4++ or F1- - to jog the motor back and forth. Press the F9 -->. button to start a homing procedure. Trigger the
digital input on the drive IN0 to finish the homing.

Remark: the homing procedure done with TwinCAT is more imprecise than executing a homing function in the drive.
The higher the communication time, the higher the lag between the decisions that the home switch has been reached.

11.4.10 Setting Controlword bit 14 to 1 (Optional)

In some cases, in the NC-PTP interface, the motor control is stopped and the motor is moved by external forces. At
motor control re-enable, the motor jumps towards the old position. This is because the new motion trajectory starts from
the actual position reference (the theoretical position where the motor should be). The position reference is also the old
position, when the motor was stopped, before it was moved by external forces.

If Controlword bit 14 is set to 1, then, when re-enabling motor control, the motion trajectory starts from the actual encoder
value. The motor will not jump if re-enabled after it was moved by external forces.

Set TwinCAT in Config Mode.

© Technosoft 2024 174 CANopen Programming

In the Solution Explorer, right click the PLC and choose Add New Item...

Name your new PLC project file and click the Add button.

In the Solution Explorer, double click the MAIN(PRG) under the PLC project file. In the newly
opened file, under the VAR section, write Var8bit AT%Q* :BYTE:=16#40; .

In the toolbar click Build/ Rebuild solution, for the Var8bit to be available for linking.

© Technosoft 2024 175 CANopen Programming

Right click the Controlword variable and choose change link.

;
While having the All types (for Show variables) checked and nCtrl1 variable selected, hold Ctrl key and select from the
end of the list MAIN.Var8bit and click OK. Both nCtrl1 and Var8bit should be selected before clicking OK.

 and
For the next two dialogues that come up next, do the following:
For the nCtrl1, just click OK. The Own Variable offset should be 0.
For the Var8bit, select the Own Variable offset = 8 and click OK.

Click the Activate configuration button, and then click OK twice to the new questions that appear.

Click PLC/ Login and click yes to the question that follows.

Click PLC/ Start, to initialize the Var8bit value.

Follow chapter 10.4.9 Enabling and testing the NC-PTP interface in TwinCAT again to test the interface.

© Technosoft 2024 176 CANopen Programming

12 Cyclic synchronous velocity mode (CSV)

12.1 Overview

The overall structure for this mode is shown in Figure 12.1.1. With this mode, the trajectory generator is located in the
control device, not in the drive device. In cyclic synchronous manner, it provides a target velocity to the drive device,
which performs velocity control and torque control. Measured by sensors, the drive device provides actual values for
position, velocity and torque to the control device.

The cyclic synchronous velocity motion is limited to a maximum acceleration by setting a number in object Object 6083h:
Profile acceleration.

The cyclic synchronous velocity mode covers the following sub-functions:

Demand value input

Velocity capture using position sensor or velocity sensor

Velocity control function with appropriate input and output signals

Limitation of torque demand

Remark: the speed control loop must be active in the Setup part for this mode to function, under the Control settings
section.

Various sensors may be used for velocity capture. In particular, the aim is that costs are reduced and the drive power
system is simplified by evaluating position and velocity using a common sensor, such as is optional using a resolver or
an encoder.

Figure 12.1.1. Cyclic synchronous velocity mode overview

Remark: The Cyclic synchronous velocity control mode is available only for firmware versions FA01x.

12.1.1 Controlword in cyclic synchronous velocity mode

The cyclic synchronous velocity mode uses no mode specific bits of the Controlword. See Object 6040h: Controlword.

12.1.2 Statusword in cyclic synchronous velocity mode

MSB LSB

See 6041h Reserved
Target velocity
ignored

See 6041h Reserved See 6041h

15 14 13 12 11 10 9 0

Table 12.1.1 – Statusword bit description for cyclic synchronous velocity mode

Name Value Description

Bit10
0 Reserved

1 Reserved

Target velocity
ignored

0 Target velocity ignored. When 6040h.8 Halt is set to 1.

1 Target velocity shall be used as input to velocity loop control

Bit13
0 Reserved

1 Reserved

12.2 Cyclic Synchronous Velocity Mode basic example

Short description of the example:

- Start the node

- Remap RPDO1 and set it as synchronous

- Remap TPDO1 and set it as synchronous

© Technosoft 2024 177 CANopen Programming

- Set CSV mode in Modes of Operation

- Set Operation Enable. The handshake between what is commanded into Controlword and what is read from
Statusword will be described in detail

- Send a typical CSV motion command.

Step 1 starts the remote node 6, which means the PDOs will be enabled.

1. Start remote node. Send an NMT message to start the node id 06.

Send the following message:

COB-ID Data

0 01 06

 Remark: if 00 is sent instead of 06, all nodes in the network will be enabled.

Steps 2 and 3 set the interpolation time to 2ms.

The interpolation time needs to be set in the object 60C2h. Sub-index 1 holds the interpolation time period value
(i.e. 2 for 2ms) and sub-index 2 holds the interpolation time index (i.e. -3 for ms = 10^-3 s). The interpolation time has
to be equal to the SYNC period and the period of the synchronous RPDO containing the position command.

2. Interpolation time period value. Set the interpolation time value to 2 (0x02).

Send the following message (SDO write access to object 60C2h sub-index 1 the 8-bit value 02h):

COB-ID Data

606 2F C2 60 01 02

3. Interpolation time index. Set the interpolation time index value to -3 (0xFD).

Send the following message (SDO write access to object 60C2h sub-index 2 the 8-bit value FDh):

COB-ID Data

606 2F C2 60 02 FD

Steps 4 to 7 remap RPDO1 to receive Controlword (6040h, 16bit) and Target Velocity (60FFh, 32bit).

4. Disable RPDO1 mapping. To reconfigure any RPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set to 0 in order to disable the PDO mapping.

Send the following message (SDO write access to object 1600h sub-index 0 the 8-bit value 00h):

COB-ID Data

606 2F 00 16 00 00

5. Map Controlword 6040h to RPDO1 sub-index 1.

Send the following message (SDO write access to object 1600h sub-index 1 the 32-bit value 60400010h):

COB-ID Data

606 23 00 16 01 10 00 40 60

6. Map Target Velocity 60FFh to RPDO1 sub-index 2.

Send the following message (SDO write access to object 1600h sub-index 2 the 32-bit value 60FF0020h):

COB-ID Data

606 23 00 16 02 20 00 FF 60

7. Enable RPDO1 mapping. To enable any RPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1600h sub-index 0 the 8-bit value 02h):

COB-ID Data

606 2F 00 16 00 02

Steps 8 to 10 set RPDO1 as synchronous.

8. Disable RPDO1. To change any RPDO Communication parameters, sub-index 1 bit 31 must be set. It is
recommended that only bit 31 is set and the number already defined inside should be kept.

Example: the sub-index 1 value is 0x206 which is the RPDO1 COB ID for axis 6 (0x200 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x206, 0x80000206 should be written.

Send the following message (SDO write access to object 1400h sub-index 1 the 32-bit value 80000206h):

COB-ID Data

606 23 00 14 01 06 02 00 80

9. Set RPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. RPDO1
data will be processed after the reception of each SYNC.

© Technosoft 2024 178 CANopen Programming

Send the following message (SDO write access to object 1400h sub-index 2 the 8-bit value 01h):

COB-ID Data

606 2F 00 14 02 01

10. Enable RPDO1. To enable a RPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the RPDO1 of axis 6, the COB ID should be (0x200 + axis ID). It means 0x206 should be written.

Send the following message (SDO write access to object 1400h sub-index 1 the 32-bit value 00000206h):

COB-ID Data

606 23 00 14 01 06 02 00 00

Steps 11 to 14 remap TPDO1 to send Statusword (6041h, 16bit) and Velocity actual value (606Ch, 32bit).

11. Disable TPDO1 mapping. To reconfigure any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set to 0 in order to disable the PDO mapping.

Send the following message (SDO write access to object 1A00h sub-index 0 the 8-bit value 00h):

COB-ID Data

606 2F 00 1A 00 00

12. Map Statusword 6041h to TPDO1 sub-index 1.

Send the following message (SDO write access to object 1A00h sub-index 1 the 32-bit value 60410010h):

COB-ID Data

606 23 00 1A 01 10 00 41 60

13. Map Velocity actual value 606Ch to TPDO1 sub-index 2.

Send the following message (SDO write access to object 1A00h sub-index 2 the 32-bit value 60640020h):

COB-ID Data

606 23 00 1A 02 20 00 6C 60

14. Enable TPDO1 mapping. To enable any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1A00h sub-index 0 the 8-bit value 02h):

COB-ID Data

606 2F 00 1A 00 02

Steps 15 to 17 set TPDO1 as synchronous.

15. Disable TPDO1. To change any TPDO Communication parameters, sub-index 1 bit 31 must be set. It is
recommended that only bit 31 is set and the number already defined inside should be kept.

Example: the sub-index 1 value is 0x186 which is the TPDO1 COB ID for axis 6 (0x180 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x186, 0x80000186 should be written.

Send the following message (SDO write access to object 1800h sub-index 1 the 32-bit value 80000186h):

COB-ID Data

606 23 00 18 01 86 01 00 80

16. Set TPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. TPDO1
data is updated when the SYNC is received, and then TPDO1 is sent as soon as possible.

Send the following message (SDO write access to object 1800h sub-index 2 the 8-bit value 01h):

COB-ID Data

606 2F 00 18 02 01

17. Enable TPDO1. To enable a TPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the TPDO1 of axis 6, the COB ID should be (0x180 + axis ID). It means 0x186 should be written.

Send the following message (SDO write access to object 1800h sub-index 1 the 32-bit value 00000186h):

COB-ID Data

606 23 00 18 01 86 01 00 00

Step 18 sets CSV mode into the Modes of operation object.

18. Set modes of operation to CSV. Write 0x09 into object 6060h to set the drive into CSV mode.

Remark: the drive will be in CSV mode only after in reaches the state Operation Enabled. This means that object
6061h (Modes of operation display) will show 9 (drive is in CSV mode), only after Operation Enabled has been
reached.

Send the following message (SDO write access to object 6060h sub-index 0 the 8-bit value 09h):

COB-ID Data

606 2F 60 60 00 09

© Technosoft 2024 179 CANopen Programming

Steps 19 to 21 bring the drive into Operation enabled state and also start the CSV mode motion.

Remark 1: from this point on, the master should send the SYNC messages at precisely 2ms (the same number
defined in 60C2h). Transmission of RPDO1 should also be started by the master.

Remark 2: the SYNC message is usually configured at the CANopen master start-up and can be sent from the
drive boot-up time. The configuration messages until this point can be sent in parallel with the SYNC messages.
Only after all the PDOs are configured as synchronous, the drive will use the SYNC signal for the PDOs.

19. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data

80 Null

 This was the SYNC signal. It must be sent at precisely 2ms intervals. In this example it can also be sent
manually, to understand each command and what it does.

Send the following message (RPDO1)

COB-ID Data

206 06 00 00 00 00 00

 The 0006 is the new value for Controlword, i.e. the command to enter Ready to switch on state.

 The 00000000 is the velocity command.

Send the following message (SYNC)

COB-ID Data

80 Null

 This was the SYNC signal. It must be sent at precisely 2ms intervals. After each SYNC signal, the drive will
send its TPDO1. To be able to change the next Controlword command in RPDO1, ensure that the drive reaches Ready
to switch on state by waiting for the TPDO1 with the following content:

Wait to receive the following message (TPDO1)

COB-ID Data

186 31 02 00 00 00 00

The 0231 is the Statusword value. The value xx31h shows that the drive reached Ready to switch on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there are
also intermediary values)

The 00000000 is the Velocity actual value and can vary depending on the encoder reported position.

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

20. Switch on. Change the node state from Ready to switch on to Switched on by sending the switch on command
via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data

80 Null

This was the SYNC signal. It must be sent at precisely 2ms intervals.

Send the following message (RPDO1)

COB-ID Data

206 07 00 00 00 00 00

The 0007 is the new value for Controlword, i.e. the command to enter Switched on state.

Send the following message (SYNC)

COB-ID Data

80 Null

This was the SYNC signal. It must be sent at precisely 2ms intervals. After each SYNC signal, the drive will
send its TPDO1. To be able to change the next Controlword command in RPDO1, ensure that the drive reaches
Switched on state by waiting for the TPDO1 with the following content:

Wait to receive the following message (TPDO1)

COB-ID Data

186 33 82 00 00 00 00

© Technosoft 2024 180 CANopen Programming

The 8233 is the Statusword value. The value xx33h shows that the drive reached Switched on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).

At this step, the drive starts applying power to the motor. The time to reach Switched on state depends on the
motor initialization method and its parameters (the Start method as defined in the Setup part in EasyMotion
Studio II). Initialization times of up to 2s are not uncommon.

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

After the drive reaches Switched On state, the master can continue to the next step.

21. Enable operation. Change the node state from Switched on to Operation enabled by sending the Enable
operation command via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 2ms intervals.

Send the following message (RPDO1)

COB-ID Data

206 0F 00 00 00 00 00

The 000F is the command to enter Operation enable state in Controlword.

Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 2ms intervals. After each SYNC signal, the drive will
send its TPDO1. Ensure that the drive reaches Operation enabled state by waiting for the TPDO1 with the
following content:

Wait for the following message (TPDO1)

COB-ID Data

186 37 96 00 00 00 00

The 9637 is the Statusword value. The value xx37h shows that the drive reached Operation enable state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values). From this step forward, the motor will execute a motion within 2ms to the absolute
position given into RPDO1 as the Target velocity.

Step 22 describes a CSV motion command:

22. Move with 20 IU. Set the velocity command to 20 IU.

Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 2ms intervals. The drive will process the previously
received RPDO immediately after the reception of the SYNC.

Send the following message (RPDO1)

COB-ID Data

206 0F 00 00 00 14 00

 The 000F is the command to enter or remain in Operation enabled state in Controlword.

 The 00140000 is the speed command (=20 in decimal).

Remark: By default, the speed value is given in IU and it is of a 16.16 bit structure. The integer part is in the MSB and
the fractional part is in the LSB.

Send the following message (SYNC)

COB-ID Data

80 null

 After this SYNC, the motor will start to travel with the speed of 20 IU over the following 2ms.

The master then needs to cyclically send the SYNC and RPDO1 with updated position commands.

© Technosoft 2024 181 CANopen Programming

13 Cyclic synchronous torque mode (CST)

13.1 Overview

The overall structure for this mode is shown in Figure 13.1.1. With this mode, the trajectory generator is located in the
control device, not in the drive device. In cyclic synchronous manner, it provides a target torque to the drive device,
which performs torque control.

Measured by sensors, the drive device provides actual values for position, velocity and torque to the control device.

The cyclic synchronous torque mode covers the following sub-functions:

• demand value input;

• torque capture;

• torque control function with appropriate input and output signals; limitation of torque demand.

Figure 13.1.1. Cyclic synchronous torque mode overview

13.1.1 Controlword in cyclic synchronous torque mode

The cyclic synchronous torque mode uses no mode specific bits of the Controlword.

13.1.2 Statusword in cyclic synchronous torque mode

MSB LSB

See 6041h Reserved
Target torque
ignored

See
6041h

Reserved See 6041h

15 14 13 12 11 10 9 0

Table 13.1.1 – Statusword bit description for Cyclic Synchronous Torque Mode

Name Value Description

Bit10
0 Reserved

1 Reserved

Target torque
ignored

0 Target torque ignored

1 Target torque shall be used as input to torque control loop

Bit13
0 Reserved

1 Reserved

13.2 Cyclic synchronous torque mode objects

13.2.1 Object 6071h: Target torque

This parameter specifies the input value configured for the torque controller when operating in Torque Profile mode.
The unit for this object is given in IU, except for FA01x firmware version, where Object 2115h: ASR4 bit 0 controls the
unit in which the object is given:

- If ASR4.0 = 0, the unit for this object is given in IU
- If ASR4.0 = 1, the unit is in thousandths (‰) of the motor's rated current specified in object 6075h.

Example:
- If the target torque is set to 500, it represents 50.0% (500 ‰) of the motor's rated current.
- If the target torque is set to 255, it represents 25.5% (255 ‰) of the motor's rated current.

© Technosoft 2024 182 CANopen Programming

Remarks:
1. When object 2115h is set to 1, the target torque can exceed 100% (equivalent to 1000 ‰) of the motor's rated current,
as defined by object 6075h.
2. The current limit is set through Object 207Fh: Current limit. This value acts as a safety threshold and will restrict the
maximum current, regardless of the value specified in object 6071h.

Object description:

Index 6071h

Name Target torque

Object code VAR

Data type INTEGER16

Entry description:

Access RW

PDO mapping Yes

Value range INTEGER16

Default value 0000h

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈] = 65520 ⋅ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴]2 ⋅ 𝐼𝑝𝑒𝑎𝑘

where Ipeak is the peak current supported by the drive and current[IU] is the command value for object 6071h.

13.2.2 Object 6077h: Torque actual value

This parameter provides the actual value of the torque, reflecting the instantaneous torque in the motor. The unit for this
value is in Internal Units (IU), except for FA01x firmware versions. In those versions, the unit is determined by the bit 0
of Object 2115h: ASR4:

- If ASR4.0 = 0, the unit is displayed in IU.
- If ASR4.0 = 1, the unit is displayed in thousandths (‰) of the motor's rated current specified in object 6075h.

Example:

- If the actual torque value is 500, it represents 50.0% (500 ‰) of the motor's rated current.

- If the actual torque value is 255, it represents 25.5% (255 ‰) of the motor's rated current.
Object description:

Index 6077h

Name Torque actual value

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping Yes

Value range INTEGER16

Default value No

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 6077h.

13.2.3 Object 6080h: Max motor speed1

This object indicate the configured maximal allowed speed of the motor, taken from the motor specifications, when the
mode of operation is CST or External Torque value. The value is given is given in user-defined velocity units. User-
defined means it can be modified by Factor group objects. The speed limitation is activated when setting a value different
from zero (default).

Object description:

Index 6080h

Name Max motor speed

Object code VAR

Data type UNSIGNED32

Entry description:

1 Available starting with firmware version FA01x.

© Technosoft 2024 183 CANopen Programming

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0

13.2.4 Object 2115h: ASR41

This object is responsible for configuring the ASR4 register, with Bit 0 of ASR4 specifying the formatting and
representation of values in Object 6071h: Target torque and 6077h: Torque actual value. The other bits in ASR4 are
reserved.

Object description:

Index 2115h

Name ASR4

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping no

Value range UNSIGNED32

Default value 1

13.3 Cyclic Synchronous Torque Mode basic example

Short description of the example:

- Start the node

- Remap RPDO1 and set it as synchronous

- Remap TPDO1 and set it as synchronous

- Set CST mode in Modes of Operation

- Set Operation Enable. The handshake between what is commanded into Controlword and what is read from
Statusword will be described in detail

- Send a typical CST motion command.

Step 1 starts the remote node 6, which means the PDOs will be enabled.

1. Start remote node. Send an NMT message to start the node id 06.

Send the following message:

COB-ID Data

0 01 06

 Remark: if 00 is sent instead of 06, all nodes in the network will be enabled.

Steps 2 and 3 set the interpolation time to 4ms.

The interpolation time needs to be set in the object 60C2h. Sub-index 1 holds the interpolation time period value
(i.e. 4 for 4ms) and sub-index 2 holds the interpolation time index (i.e. -3 for ms = 10^-3 s).

The interpolation time has to be equal to the SYNC period and the period of the synchronous RPDO containing the
position command.

2. Interpolation time period value. Set the interpolation time value to 4 (0x04).

Send the following message (SDO write access to object 60C2h sub-index 1 the 8-bit value 04h):

COB-ID Data

606 2F C2 60 01 04

3. Interpolation time index. Set the interpolation time index value to -3 (0xFD).

Send the following message (SDO write access to object 60C2h sub-index 2 the 8-bit value FDh):

COB-ID Data

606 2F C2 60 02 FD

Steps 4 to 7 remap RPDO1 to receive Controlword (6040h, 16bit) and Target Torque (6071h, 16bit).

1 Available starting with firmware version FA01C or newer.

© Technosoft 2024 184 CANopen Programming

4. Disable RPDO1 mapping. To reconfigure any RPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set to 0 in order to disable the PDO mapping.

Send the following message (SDO write access to object 1600h sub-index 0 the 8-bit value 00h):

COB-ID Data

606 2F 00 16 00 00

5. Map Controlword 6040h to RPDO1 sub-index 1.

Send the following message (SDO write access to object 1600h sub-index 1 the 32-bit value 60400010h):

COB-ID Data

606 23 00 16 01 10 00 40 60

6. Map Target Torque 6071h to RPDO1 sub-index 2.

Send the following message (SDO write access to object 1600h sub-index 2 the 32-bit value 60710020h):

COB-ID Data

606 23 00 16 02 10 00 71 60

7. Enable RPDO1 mapping. To enable any RPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1600h sub-index 0 the 8-bit value 02h):

COB-ID Data

606 2F 00 16 00 02

Steps 8 to 10 set RPDO1 as synchronous.

8. Disable RPDO1. To change any RPDO Communication parameters, sub-index 1 bit 31 must be set. It is
recommended that only bit 31 is set and the number already defined inside should be kept.

Example: the sub-index 1 value is 0x206 which is the RPDO1 COB ID for axis 6 (0x200 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x206, 0x80000206 should be written.

Send the following message (SDO write access to object 1400h sub-index 1 the 32-bit value 80000206h):

COB-ID Data

606 23 00 14 01 06 02 00 80

9. Set RPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. RPDO1
data will be processed after the reception of each SYNC.

Send the following message (SDO write access to object 1400h sub-index 2 the 8-bit value 01h):

COB-ID Data

606 2F 00 14 02 01

10. Enable RPDO1. To enable a RPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the RPDO1 of axis 6, the COB ID should be (0x200 + axis ID). It means 0x206 should be written.

Send the following message (SDO write access to object 1400h sub-index 1 the 32-bit value 00000206h):

COB-ID Data

606 23 00 14 01 06 02 00 00

Steps 11 to 14 remap TPDO1 to send Statusword (6041h, 16bit) and Torque actual value (6077h, 16bit).

11. Disable TPDO1 mapping. To reconfigure any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set to 0 in order to disable the PDO mapping.

Send the following message (SDO write access to object 1A00h sub-index 0 the 8-bit value 00h):

COB-ID Data

606 2F 00 1A 00 00

12. Map Statusword 6041h to TPDO1 sub-index 1.

Send the following message (SDO write access to object 1A00h sub-index 1 the 32-bit value 60410010h):

COB-ID Data

606 23 00 1A 01 10 00 41 60

13. Map Torque actual value 6077h to TPDO1 sub-index 2.

Send the following message (SDO write access to object 1A00h sub-index 2 the 32-bit value 60770020h):

COB-ID Data

606 23 00 1A 02 10 00 77 60

14. Enable TPDO1 mapping. To enable any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1A00h sub-index 0 the 8-bit value 02h):

© Technosoft 2024 185 CANopen Programming

COB-ID Data

606 2F 00 1A 00 02

Steps 15 to 17 set TPDO1 as synchronous.

15. Disable TPDO1. To change any TPDO Communication parameters, sub-index 1 bit 31 must be set. It is
recommended that only bit 31 is set and the number already defined inside should be kept.

Example: the sub-index 1 value is 0x186 which is the TPDO1 COB ID for axis 6 (0x180 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x186, 0x80000186 should be written.

Send the following message (SDO write access to object 1800h sub-index 1 the 32-bit value 80000186h):

COB-ID Data

606 23 00 18 01 86 01 00 80

16. Set TPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. TPDO1
data is updated when the SYNC is received, and then TPDO1 is sent as soon as possible.

Send the following message (SDO write access to object 1800h sub-index 2 the 8-bit value 01h):

COB-ID Data

606 2F 00 18 02 01

17. Enable TPDO1. To enable a TPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the TPDO1 of axis 6, the COB ID should be (0x180 + axis ID). It means 0x186 should be written.

Send the following message (SDO write access to object 1800h sub-index 1 the 32-bit value 00000186h):

COB-ID Data

606 23 00 18 01 86 01 00 00

Step 18 sets CST mode into the Modes of operation object.

18. Set modes of operation to CST. Write 0x0A into object 6060h to set the drive into CST mode.

Remark: the drive will be in CST mode only after in reaches the state Operation Enabled. This means that object
6061h (Modes of operation display) will show 10 (drive is in CST mode), only after Operation Enabled has been
reached.

Send the following message (SDO write access to object 6060h sub-index 0 the 8-bit value 0Ah):

COB-ID Data

606 2F 60 60 00 0A

Steps 19 to 21 bring the drive into Operation enabled state and also start the CST control.

Remark 1: from this point on, the master should send the SYNC messages at precisely 4ms (the same number
defined in 60C2h). Transmission of RPDO1 should also be started by the master.

Remark 2: the SYNC message is usually configured at the CANopen master start-up and can be sent from the
drive boot-up time. The configuration messages until this point can be sent in parallel with the SYNC messages.
Only after all the PDOs are configured as synchronous, the drive will use the SYNC signal for the PDOs.

19. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data

80 Null

 This was the SYNC signal. It must be sent at precisely 4ms intervals. In this example it can also be sent
manually, to understand each command and what it does.

Send the following message (RPDO1)

COB-ID Data

206 06 00 00 00

 The 0006 is the new value for Controlword, i.e. the command to enter Ready to switch on state.

 The 0000 is the torque command.

Send the following message (SYNC)

COB-ID Data

80 Null

 This was the SYNC signal. It must be sent at precisely 4ms intervals.

 After each SYNC signal, the drive will send its TPDO1. To be able to change the next Controlword command
in RPDO1, ensure that the drive reaches Ready to switch on state by waiting for the TPDO1 with the following
content:

© Technosoft 2024 186 CANopen Programming

Wait to receive the following message (TPDO1)

COB-ID Data

186 31 02 00 00

The 0231 is the Statusword value. The value xx31h shows that the drive reached Ready to switch on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there are
also intermediary values)

The 0000 is the Torque actual value and can vary depending on the encoder reported position.

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

20. Switch on. Change the node state from Ready to switch on to Switched on by sending the switch on command
via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data

80 Null

This was the SYNC signal. It must be sent at precisely 4ms intervals.

Send the following message (RPDO1)

COB-ID Data

206 07 00 00 00

The 0007 is the new value for Controlword, i.e. the command to enter Switched on state.

Send the following message (SYNC)

COB-ID Data

80 Null

This was the SYNC signal. It must be sent at precisely 4ms intervals.

 After each SYNC signal, the drive will send its TPDO1. To be able to change the next Controlword command
in RPDO1, ensure that the drive reaches Switched on state by waiting for the TPDO1 with the following content:

Wait to receive the following message (TPDO1)

COB-ID Data

186 33 02 00 00

The 0233 is the Statusword value. The value xx33h shows that the drive reached Switched on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).

At this step, the drive starts applying power to the motor. The time to reach Switched on state depends on the
motor initialization method and its parameters (the Start method as defined in the Setup part in EasyMotion
Studio II). Initialization times of up to 2s are not uncommon.

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

After the drive reaches Switched On state, the master can continue to the next step.

21. Enable operation. Change the node state from Switched on to Operation enabled by sending the Enable
operation command via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 4ms intervals.

Send the following message (RPDO1)

COB-ID Data

206 0F 00 00 00

The 000F is the command to enter Operation enable state in Controlword.

Send the following message (SYNC)

COB-ID Data

80 null

© Technosoft 2024 187 CANopen Programming

This was the SYNC signal. It must be sent at precisely 4ms intervals.

 After each SYNC signal, the drive will send its TPDO1. Ensure that the drive reaches Operation enabled state
by waiting for the TPDO1 with the following content:

Wait for the following message (TPDO1)

COB-ID Data

186 37 92 00 00

The 9237 is the Statusword value. The value xx37h shows that the drive reached Operation enable state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).

From this step forward, the motor will execute a motion within 4ms to the absolute position given into RPDO1
as the Target torque.

Step 22 describes a CST command:

22. Apply a torque of 2 IU. Set the torque command to 2 IU.

Send the following message (SYNC)

COB-ID Data

80 null

This was the SYNC signal. It must be sent at precisely 4ms intervals. The drive will process the previously
received RPDO immediately after the reception of the SYNC.

Send the following message (RPDO1)

COB-ID Data

206 0F 00 02 00

 The 000F is the command to enter or remain in Operation enabled state in Controlword.

 The 0002 is the torque command (=2 in decimal).

Send the following message (SYNC)

COB-ID Data

80 null

 After this SYNC, a torque reference of 2 IU over the following 4ms will be applied to the motor.

The master then needs to cyclically send the SYNC and RPDO1 with updated position commands.

© Technosoft 2024 188 CANopen Programming

14 Velocity Profile Mode

14.1 Overview

In the Velocity Profile Mode the drive performs speed control. The built-in reference generator computes a speed profile
with a trapezoidal shape, due to a limited acceleration. Object 60FFh: Target velocity specifies the jog speed (speed
sign specifies the direction) and Object 6083h: Profile acceleration the acceleration/deceleration rate. While the mode
is active, any change of the Target Velocity object by the CANopen master will update the drive’s demand velocity
enabling you to change on the fly the slew speed and/or the acceleration/deceleration rate. The motion will continue
until the Halt bit from the Controlword is set. An alternate way to stop the motion is to set the jog speed to zero.

While the mode is active (profile velocity mode is selected in modes of operation), every time a write access is performed
inside the object target velocity, the demand velocity of the drive is updated.

14.1.1 Controlword in Profile Velocity mode

MSB LSB

See 6040h Halt See 6040h reserved See 6040h

15 9 8 7 6 4 3 0

Table 14.1 – Controlword bits for Profile Velocity mode

Name Value Description

Halt
0 Execute the motion

1 Stop drive with profile acceleration

14.1.2 Statusword in Profile Velocity mode

MSB LSB

See 6041h
Max slippage
error

Speed See 6041h
Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 14.2 – Statusword bits for Profile Velocity mode

Name Value Description

Target reached

0
Halt = 0: Target velocity not (yet) reached
Halt = 1: Drive decelerates

1
Halt = 0: Target velocity reached
Halt = 1: Velocity of drive is 0

Speed
0 Speed is not equal to 0

1 Speed is equal to 0

Max slippage
error

0 Maximum slippage not reached

1 Maximum slippage reached

Remark: In order to set / reset bit 12 (speed), Object 606Fh: Velocity threshold is used. If the actual velocity of the drive
/ motor is below the velocity threshold, then bit 12 will be set, else it will be reset.

14.2 Velocity Mode Objects

14.2.1 Object 6069h: Velocity sensor actual value

This object describes the value read from the velocity encoder in increments.

The velocity units are user defined speed units. The value can be converted into internal units using the velocity factor

If no factor is applied 65536 IU = 1 encoder increment / sample.

Object description:

Index 6069h

Name Velocity sensor actual value

Object code VAR

Data type INTEGER32

© Technosoft 2024 189 CANopen Programming

Entry description:

Access RO

PDO mapping Possible

Value range INTEGER32

Default value -

14.2.2 Object 606Bh: Velocity demand value

This object provides the output of the trajectory generator and is provided as an input for the velocity controller. It is
given in user-defined velocity units which can be modified by Factor group objects.

Object description:

Index 606Bh

Name Velocity demand value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Value range INTEGER32

Default value -

14.2.3 Object 606Ch: Velocity actual value

The velocity actual value is given in user-defined velocity units. User-defined means it can be modified by Factor group
objects. It is read from the velocity sensor.

Object description:

Index 606Ch

Name Velocity actual value

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Yes

Value range INTEGER32

Default value -

14.2.4 Object 606Dh: Velocity window1

When the difference between the Object 60FFh: Target velocity and the Object 606Ch: Velocity actual value is in the
velocity window for longer than the Object 606Eh: Velocity window time, the Target reached bit (Statusword) is set. The
value is given in user-defined velocity units which means it can be modified by Factor group objects.

Object description:

Index 606Dh

Name Velocity window

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Yes

Value range UNSIGNED16

Default value -

14.2.5 Object 606Eh: Velocity window time2

When the difference between the Object 60FFh: Target velocity and the Object 606Ch: Velocity actual value is in the
Object 606Dh: Velocity window for longer than the velocity window time, the Target reached bit (Statusword) is set. The
value is given in milliseconds.

1 Available starting with F514K / FA01x firmware version
2 Available starting with F514K / FA01x firmware version

© Technosoft 2024 190 CANopen Programming

Object description:

Index 606Eh

Name Velocity window time

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Yes

Value range UNSIGNED16

Default value -

14.2.6 Object 606Fh: Velocity threshold

The velocity threshold is given in user-defined velocity units and it represents the threshold for velocity at which it is
regarded as zero velocity. Based on its value, bit 12 of Statusword (speed) will be set or reset. User-defined means it
can be modified by Factor group objects.

Object description:

Index 606Fh

Name Velocity threshold

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Value range UNSIGNED16

Default value -

14.2.7 Object 60FFh: Target velocity

The target velocity is the input for the trajectory generator and the value is given in user-defined velocity units. User-
defined means it can be modified by Factor group objects. By default, the value is given in IU and it is of a 16.16 bit
structure. The integer part is in the MSB and the fractional part is in the LSB. To elaborate, see Paragraph 8.2.2
example.

This object is used for the velocity command only when Object 6060h: Modes of Operation is 3 (Speed Mode).

Object description:

Index 60FFh

Name Target velocity

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping possible

Value range INTEGER32

Default value -

14.2.8 Object 60F8h: Max slippage

The max slippage monitors whether the maximum speed error. The value is given in user-defined velocity units. User-
defined means it can be modified by Factor group objects. When the max slippage has been reached, the corresponding
bit 13 max slippage error in the Statusword is set and the drive will fault by signalizing a control error (Object 2000h:
Motion Error Register bit3=1).

The Speed control error is active only if the speed loop is active in setup. By default it is disabled. The speed control
error is set when the actual speed error is greater than what is defined in Object 60F8h: Max slippage for a time defined
in Object 2005h: Max slippage time out.

Object description:

Index 60F8h

Name Max slippage

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping possible

Value range INTEGER32

Default value -

© Technosoft 2024 191 CANopen Programming

This object is automatically set in the Setup part by modifying the Speed control error under the Protections and limits
section.

The value for this object can be changed by editing the parameter “SERRMAX” found in parameters.xml of the project
file.

By default, the value is given in IU and it is of a 16.16 bit structure. The integer part is in the MSB and the fractional part
is in the LSB. To elaborate, see Paragraph 8.2.2 example.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

14.2.9 Object 2005h: Max slippage time out

Time interval for max slippage. The value is given in slow loop (control loop) time which is by default set to 1ms for
brushless and brushed motors and 0.8ms for stepper motors. This object is coupled with Object 60F8h: Max slippage.

Object description:

Index 2005h

Name Max slippage time out

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value -

The value for this object can be changed by editing the parameter “TSERRMAX” found in parameters.xml of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

14.2.10 Object 2087h20F

1: Actual internal velocity from sensor on motor

This object describes the velocity value read from the encoder on the motor in increments, in case a dual loop control
method is used. The value is given in increments per sampling loop. The default sampling loop is 1ms.

The read value is of a 16.16 bit structure.

Object description:

Index 2087h

Name
Actual internal velocity sensor on
motor

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Value range INTEGER32

Default value -

1 Object 2087h applies only to drives which have a secondary feedback

© Technosoft 2024 192 CANopen Programming

14.3 Speed profile example

Remark: any speed profile mode can be run only if the speed loop is active in setup.
To enable the Current + Speed loop, in the setup part, under Control settings section select:

After the speed is selected, the tuning for the speed loop must be done.
To enable the Current + Speed + Position loop, select:

After all three loops are selected, the tuning for the speed and position must be done again.

Execute a speed control with 600 rpm target speed.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Mode of operation. Select speed mode.
Send the following message (SDO access to object 6060h, 8-bit value 3h):

COB-ID Data

606 2F 60 60 00 03 00 00 00

6. Target velocity. Set the target velocity to 600 rpm. By using a 500 lines incremental encoder and 1ms sample
rate for position/speed control the corresponding value of object 60FFh expressed in encoder counts per
sample is 140000h.

Send the following message (SDO access to object 60FFh 32-bit value 00140000h):

COB-ID Data

606 23 FF 60 00 00 00 14 00

7. Check the motor actual speed. It should rotate with 600 rpm.

© Technosoft 2024 193 CANopen Programming

Send the following message (SDO access to read object 606Ch Velocity actual value):

COB-ID Data

606 40 6C 60 00 00 00 00 00

14.4 Speed profile example for stepper open loop

Remark: In the case of stepper open-loop control, speed control is possible irrespective of the chosen control mode,
whether it is speed or position. However, for proper operation, the current controller needs to be tuned.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Mode of operation. Select speed mode.

Send the following message (SDO access to object 6060h, 8-bit value 3h):

COB-ID Data

606 2F 60 60 00 03 00 00 00

6. Target velocity. Set the target velocity to 300 rpm. By using a stepper open-loop control with 200 steps and
µstepping set to 512, along with a 1 ms sample rate for position and speed control (slow loop), the 300 rpm
expressed in internal units (IU) is 512. This calculation takes into account that 1 rotation is equal to the product
of steps number and µstep number, and 1 IU is equivalent to 1 µstep per slow loop. The value to be configured
in object 60FFh is 512*65536 = 33554432 = 2000000h

Send the following message (SDO access to object 60FFh 32-bit value 02000000h):

COB-ID Data

606 23 FF 60 00 00 00 00 02

© Technosoft 2024 194 CANopen Programming

15 Electronic Gearing Position (EGEAR) Mode

15.1 Overview

In Electronic Gearing Position Mode the drive follows the position of an electronic gearing master with a programmable
gear ratio.

The electronic gearing slave can get the position information from the electronic gearing master:

1. Via CANopen master, which writes the master position in object Master position (Object 201Eh: Master
position).

2. From another Technosoft CANopen drive set as electronic gearing master with object Master Settings (Object
2010h: Master settings). The position is sent using TechnoCAN, an extension of the CANopen protocol,
developed by Technosoft.

3. Via an external digital reference1 of type pulse & direction or quadrature encoder. Both options have dedicated
inputs. The pulse & direction signals are usually provided by an indexer and must be connected to the pulse &
direction inputs of the drive. The quadrature encoder signals are usually provided by an encoder on the master
and must be connected to the 2nd encoder inputs.

4. From one of the analogue inputs of the drive.

The reference type, i.e. the selection between the online reference received via communication channel and the digital
reference read from dedicated inputs is done with object External Reference Type (Object 201Dh: External Reference
Type). The source of the digital reference (pulse & direction or second encoder inputs) is set during drive commissioning.

The drive set as slave in electronic gearing mode performs a position control. At each slow loop sampling period, the
slave computes the master position increment and multiplies it with its programmed gear ratio. The result is the slave
position reference increment, which added to the previous slave position reference gives the new slave position
reference.

Remark: The slave executes a relative move, which starts from its actual position

The gear ratio is specified via EGEAR multiplication factor object (Object 2013h: EGEAR multiplication factor). EGEAR
ratio numerator (sub-index 1) is a signed integer, while EGEAR ratio denominator (sub-index 2) is an unsigned integer.
The EGEAR ratio numerator sign indicates the direction of movement: positive – same as the master, negative –
reversed to the master. The result of the division between EGEAR ratio numerator and EGEAR ratio denominator is
used to compute the slave reference increment.

The Registration Mode offers the possibility to super-impose another profile on top of the existing EGEAR one. By
setting Controlword.15 (Registration mode bit), the slave computes the master position increment and multiplies it
with its programmed gear ratio, then adds another internally generated trajectory defined by the user (Trapezoidal
Profile, S-Curve Profile, etc.). Using Registration mode the movement can be speed up, slow down or a position offset
can be added to the EGAER command.

The Master Resolution object (Object 2012h: Master resolution) provides the master resolution, which is needed to
compute correctly the master position and speed (i.e. the position increment). If master position is not cyclic (i.e. the
resolution is equal with the whole 32-bit range of position), set master resolution to 0x80000001.

You can smooth the slave coupling with the master, by limiting the maximum acceleration of the slave drive. This is
particularly useful when the slave has to couple with a master running at high speed, in order to minimize the shocks in
the slave. The feature is activated by setting Controlword.5=1 and the maximum acceleration value in Object 6083h:
Profile acceleration.

15.1.1 Controlword in electronic gearing position mode (slave axis)

MSB LSB

See
6040h

Halt
See
6040h

Reserved
Activate Acceleration
Limitation

Enable Electronic
Gearing Mode

See
6040h

15 9 8 7 6 5 4 3 0

Table 15.1 – Controlword bits for Electronic Gearing Position Mode

Name Value Description

Enable
Electronic
Gearing Mode

0 Do not start operation

0 -> 1 Start electronic gearing procedure

1 -> 0 Does nothing (does not stop current procedure)

Activate
Acceleration
Limitation

0 Do not limit acceleration when entering electronic gear mode

1
Limit acceleration when entering electronic gear mode to the value set in
profile acceleration (Object 6083h: Profile acceleration)

Halt
0 Execute the instruction of bit 4

1 Stop drive with profile acceleration

1 Not all drives have a secondary encoder input.

© Technosoft 2024 195 CANopen Programming

15.1.2 Statusword in electronic gearing position mode

MSB LSB

See 6041h Following error Reserved See 6041h Target reached See 6041h

15 14 13 12 11 10
9
0

Table 15.2 – Statusword bits for Electronic Gearing Position Mode

Name Value Description

Target
reached

0
Halt = 0: Always 0
Halt = 1: Drive decelerates

1
Halt = 0: Always 0
Halt = 1: Velocity of drive is 0

Following
error

0 No following error

1 Following error occurred

15.2 Gearing Position Mode Objects

15.2.1 Object 201E1
h: Master position

This object is used in order to receive the position from the master, which is used for Electronic Gearing or Camming
calculations. The position units are in increments.
Example: if it takes 4000 increments for the motor to do one revolution, these same increments apply for this object.

Object description:

Index 201Eh

Name Master position

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping Possible

Units Increments

Value range 0 … 231-1

Default value -

15.2.2 Object 2010h: Master settings

This object contains key settings for the master of EGEAR / ECAM mode. A master in EGEAR / ECAM mode is a drive
that controls a motor (irrespective of the control mode) and that will be designated to send the information about its
position (demanded position or actual position) via communication to one or more slaves (programmed accordingly).
This object also allows setting the address of the slave to which the master will send its position, or, if there are more
slaves to receive simultaneously the position from the master, the Group ID of these slaves.

Object description:

Index 2010h

Name Master settings

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Possible

Units -

Value range 0 … 65535

Default value 0

Table 15.3 – Master Settings bits description

Bit Value Description

15
0 Master is not active – the master drive does not send any position values

1 Master is active – the master drive starts sending its position to the slave axis

14 10 0 Reserved

9
0 The master sends its feedback (the position actual value)

1 The master sends the demand position

8
0 Address is an axis ID

1 Address is a group ID

7 … 0 x Address of the slave drive(s)

1 Available only with FA01x firmware versions.

© Technosoft 2024 196 CANopen Programming

15.2.3 Object 2012h: Master resolution

This object is used in order to set the master resolution in increments per revolution. This object is valid for the slave
axis.

Object description:

Index 2012h

Name Master resolution

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Units Increments

Value range 0 … 231-1

Default value 80000001h (full range)

15.2.4 Object 2013h: EGEAR multiplication factor

In digital external mode, this object sets the gear ratio, or gear multiplication factor for the slaves. The sign indicates the
direction of movement: positive – same as the master, negative – reversed to the master. The slave demand position is
computed as the master position increment multiplied by the gear multiplication factor.

Example: if the gear ratio is Slave/Master = 1/3, the following values must be set: 1 in EGEAR ratio numerator (sub-
index 1) and 3 in EGEAR ratio denominator (sub-index 2) .

Remark: the gear ratio is computed after sub-index 2 is written. So sub-index1 must be written first and then sub-index
2. Even if sub-index 2 has the same value as before, it must be written again for the gear ratio to be computed correctly.

Object description:

Index 2013h

Name EGEAR multiplication factor

Object code RECORD

Number of elements 2

Entry description:

Sub-index 1

Description EGEAR ratio numerator (slave)

Object code VAR

Data type INTEGER16

Access RW

PDO mapping Possible

Value range -32768 … 32767

Default value 1

Sub-index 2

Description EGEAR ratio denominator (master)

Object code VAR

Data type UNSIGNED16

Access RW

PDO mapping Possible

Value range 0 … 65535

Default value 1

15.2.5 Object 2017h: Master actual position

The actual position of the master can be monitored through this object, regardless of the way the master actual position
is delivered to the drive (on-line through a communication channel or from the digital inputs of the drive). The units are
increments.

Object description:

Index 2017h

Name Master actual position

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping Possible

Value range -231 … 231-1

Default value 0

© Technosoft 2024 197 CANopen Programming

15.2.6 Object 2018h: Master actual speed

This object is used to inform the user of the actual value of the speed of the master, regardless of the way the master
actual position is delivered to the drive (on-line through a communication channel or from the digital inputs of the drive).
The units are increments / sampling. 1 IU = 1 encoder increment / sample.

Object description:

Index 2018h

Name Master actual speed

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping Possible

Value range -32768 … 32767

Default value 0

15.2.7 Object 201Dh: External Reference Type

This object is used to set the type of external reference for use with electronic gearing position, electronic camming
position, position external, speed external and torque external modes.

Object description:

Index 201Dh

Name External Reference Type

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value -

Table 15.4 – External Reference Type bit description

Value Description

0 Reserved

1

On-line.
In case of External Reference Position / Speed / Torque Modes, select this option in order to read the
reference from the object Object 201Ch: External On-line Reference
In case of Electronic Gearing and Camming Position Modes, select this option in order to read the
master position received from a master drive via communication (Object 201Eh: Master position).

2
Analogue.
In case of External Reference Position / Speed / Torque Modes, select this option in order to read the
reference from the dedicated analogue input.

3

Digital.
In case of External Reference Position Modes, select this option in order to read the reference from
the dedicated digital inputs as set in the setup made using EasyMotion Studio II (either 2nd encoder
or pulse & direction).
In case of Electronic Gearing and Camming Position Modes, select this option in order to read master
position from the dedicated digital inputs as set in the setup made using EasyMotion Studio II (either
2nd encoder or pulse & direction).

4 … 65535 Reserved

15.3 Electronic gearing through CAN example

This example is split in two parts:
Part1: Start an electronic gearing master profile on CAN.

1. Start remote node. Send a NMT message to start the node id 7.
Send the following message:

COB-ID Data

0 01 07

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

207 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

© Technosoft 2024 198 CANopen Programming

Send the following message:

COB-ID Data

207 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

207 0F 00

5. Modes of operation. Select speed mode.
Send the following message (SDO access to object 6060h, 8-bit value 3h):

COB-ID Data

607 2F 60 60 00 03 00 00 00

6. Target Velocity. Set speed to 15 IU.
Send the following message (SDO access to object 60FFh, 32-bit value Fh):

COB-ID Data

607 23 FF 60 00 00 00 0F 00

The master motor should start rotating with 15IU speed.
7. Master Settings. Set the drive as master and program it to send its reference to axis 6.

Send the following message (SDO access to object 2010h 32-bit value 00008206h):

COB-ID Data

607 2B 10 20 00 06 82 00 00

Part2: Start an Electronic Gearing Slave on CAN
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. External reference type. Slave receives reference through CAN.
Send the following message (SDO access to object 201Dh):

COB-ID Data

606 2B 1D 20 00 01 00 00 00

6. Modes of operation. Select Electronic Gearing mode.
Send the following message (SDO access to object 6060h, 8-bit value -1):

COB-ID Data

606 2F 60 60 00 FF 00 00 00

7. Master resolution. Set the master resolution.
Send the following message (SDO access to object 2012h, 32-bit value 2000):

COB-ID Data

606 23 12 20 00 D0 07 00 00

8. Electronic gearing multiplication factor.
Set EG numerator to 1.

Send the following message (SDO access to object 2013h,sub-index 1, 16-bit value 1):

COB-ID Data

606 2B 13 20 01 01 00 00 00

Set EG denominator to 1. Send the following message (SDO access to object 2013h,sub-index 2, 16-bit value 1):

COB-ID Data

606 2B 13 20 02 01 00 00 00

9. Enable EG slave in Controlword associated PDO.
Send the following message:

COB-ID Data

206 1F 00

The slave motor should start rotating with the same speed as the master motor.

© Technosoft 2024 199 CANopen Programming

16 Electronic Camming Position (ECAM) Mode

16.1 Overview

In Electronic Camming Position, the drive executes a cam profile function of the position of an electronic camming
master. The cam profile is defined by a cam table – a set of (X, Y) points, where X is cam table input i.e. the position of
the electronic camming master and Y is the cam table output i.e. the corresponding slave position. Between the points,
the drive performs a linear interpolation.

The electronic camming slave can get the position information from the electronic camming master via CANbus
communication channel, from another Technosoft drive set as electronic camming master with object Master Settings
(Object 2010h: Master settings). The position is sent using TechnoCAN, an extension of the CANopen protocol,
developed by Technosoft.

The reference type is received online via communication channel and it is set with object External Reference Type
(index 201Dh). The electronic camming position mode can be: relative (if Controlword.6 = 0) or absolute (if
Controlword.6 = 1).

In the relative mode, the output of the cam table is added to the slave actual position. At each slow loop sampling period
the slave computes a position increment dY = Y – Yold. This is the difference between the actual cam table output Y
and the previous one Yold. The position increment dY is added to the old demand position to get a new demand position.
The slave detects when the master position rolls over, from 360 degrees to 0 or vice-versa and automatically
compensates in dY the difference between Ymax and Ymin. Therefore, in relative mode, you can continuously run the
master in one direction and the slaves will execute the cam profile once at each 360 degrees with a glitch-free transition
when the cam profile is restarted.

When electronic camming is activated in relative mode, the slave initializes Yold with the first cam output computed:
Yold = Y = f(X). The slave will keep its position until the master starts to move and then it will execute the remaining
part of the cam. For example if the master moves from X to Xmax, the slave moves with Ymax – Y.

In the absolute mode, the output of the cam table Y is the demand position to reach.

Remark: The absolute mode must be used with great care because it may generate abrupt variations on the slave
demand position if:

 Slave position is different from Y at entry in the camming mode

 Master rolls over and Ymax < Ymin

In the absolute mode, you can introduce a maximum speed limit to protect against accidental sudden changes of the
positions to reach. The feature is activated by setting Controlword.5=1 and the maximum speed value in object Profile
Velocity (Object 6081h: Profile velocity).

Typically, the cam tables are first downloaded into the EEPROM memory of the drive by the CANopen master or with
EasyMotion Studio II. Then using the object CAM table load address (Object 2019h: CAM table load address) they are
copied in the RAM address set in object CAM table run address (Object 201Ah: CAM table run address). It is possible
to copy more than one cam table in the drive/motor RAM memory. When the ECAM mode is activated, it uses the CAM
table found at the RAM address contained in CAM table run address.

A CAM table can be shifted, stretched or compressed.

16.1.1 Controlword in electronic camming position mode

MSB LSB

See
6040h

Halt
See
6040h

Abs / Rel
Activate
Speed
Limitation

Enable
Electronic
Camming Mode

See 6040h

15 9 8 7 6 5 4 3 0

Table 16.1 – Controlword bits for electronic camming position mode

Name Value Description

Enable Electronic
Camming Mode

0 Do not start operation

0 -> 1 Start electronic camming procedure

1 -> 0 Do nothing (does not stop current procedure)

Activate Speed
Limitation

0 Do not limit speed when entering absolute electronic camming mode

1
Limit speed when entering absolute electronic camming mode at the
value set in profile velocity (ONLY for absolute mode)

Abs / Rel
0

Perform relative camming mode – when entering the camming
mode, the slave will compute the cam table relative to the starting
moment.

1
Perform absolute camming mode – when entering the camming
mode, the slave will go to the absolute position on the cam table

Halt
0 Execute the instruction of bit 4

1 Stop drive with profile acceleration

© Technosoft 2024 200 CANopen Programming

16.1.2 Statusword in electronic camming position mode

MSB LSB

See 6041h
Following
error

Reserved
See
6041h

Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 16.2 – Statusword bits for electronic camming position mode

Name Value Description

Target reached
0

Halt = 0: Always 0
Halt = 1: Drive decelerates

1
Halt = 0: Always 0
Halt = 1: Velocity of drive is 0

Following error
0 No following error

1 Following error occurred

16.2 Electronic Camming Position Mode Objects

16.2.1 Object 2019h: CAM table load address

This is the load address of the CAM table. The CAM table is stored in EEPROM memory of the drive starting from the
load address. The initialization of the electronic camming mode requires the CAM table to be copied from the EEPROM
memory to the RAM memory of the drive, starting from the run address, set in Object 201Ah: CAM table run address,
for faster processing. The copy is made every time object 2019h is written by SDO access.

Remark: The CAM table run address object must be set before writing the object CAM table load address to assure
a proper copy operation from EEPROM to RAM memory.

Object description:

Index 2019h

Name CAM table load address

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Units -

Value range UNSIGNED16

Default value
Variable depending on motor +
feedback configuration

16.2.2 Object 201Ah: CAM table run address

This is the run address of the CAM table e.g. the RAM address starting from which the CAM table is copied into the
RAM during initialization of the electronic camming mode. (See also Object 2019h: CAM table load address).

Object description:

Index 201Ah

Name CAM table run address

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping No

Units -

Value range UNSIGNED16

Default value 9E00h

16.2.3 Object 201Bh: CAM offset

This object may be used to shift the master position in electronic camming mode. The position actually used as X input
in the cam table is not the master actual position (Object 2017h: Master actual position) but (master actual position –
CAM offset) computed as modulo of master resolution (Object 2012h: Master resolution) The CAM offset must be set
before enabling the electronic camming mode. The CAM offset is expressed in increments.

© Technosoft 2024 201 CANopen Programming

Object description:

Index 201Bh

Name CAM offset

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Value range 0 … 232-1

Default value 0

16.2.4 Object 206Bh: CAM: input scaling factor

You can use this scaling factor in order to achieve a scaling of the input values of a CAM table. Its default value of
00010000h corresponds to a scaling factor of 1.0.

Object description:

Index 206Bh

Name CAM input scaling factor

Object code VAR

Data type FIXED32

Entry description:

Access RW

PDO mapping Possible

Units -

Value range FIXED32

Default value 00010000h

16.2.5 Object 206Ch: CAM: output scaling factor

You can use this scaling factor in order to achieve a scaling of the output values of a CAM table. Its default value of
00010000h corresponds to a scaling factor of 1.0.

Object description:

Index 206Ch

Name CAM output scaling factor

Object code VAR

Data type FIXED32

Entry description:

Access RW

PDO mapping Possible

Units -

Value range FIXED32

Default value 00010000h

16.2.6 Building a CAM profile and saving it as an .sw file example

You can create a CAM profile using any program of your choice. In this example, Microsoft Excel is used to construct a
CAM table in an organized and effective manner.

Figure 16.2.1. MS Excel interface

© Technosoft 2024 202 CANopen Programming

CAM tables are structured as arrays of points, where each point consists of two values: X and Y. These values represent
the following:

• X: The input value, corresponding to the master position.

• Y: The output value, corresponding to the slave position.
The X points are expressed in the master’s internal position units, while the Y points are expressed in the slave’s internal
position units. Both X and Y values must be stored as 32-bit integers. To ensure proper functionality, the CAM table
must respect to the following requirements:

1. The X points must be positive values, including zero.
2. The X points must be equally spaced with an interpolation step that is a power of 2 (e.g., 1, 2, 4, 8, 16, 32, 64,

or 128).
3. The maximum number of points for a single CAM table is 8192.

Since the X points are evenly spaced, they can be fully defined using only two parameters:
1. The starting value of the master position, which corresponds to the first X point.
2. The interpolation step, which determines the spacing between consecutive X points.

Using Microsoft Excel, you can input these X and Y points into two separate columns to create the CAM table.
Excel provides a straightforward way to visualize and manage the points:

Figure 16.2.2. CAM example

After the cam is ready, save it as Text (Tab delimited) (*.txt) file.

Figure 16.2.3. Save As example.

Once you have your cam file saved, start EasyMotion Studio II, either LITE or FULL version.

Press New button and set the appropriate communication settings, then Scan for drives.

After locating the drive, select the motor technology and open a new configuration. Navigate to the CAM Tables tab in
the Application tree (typically located on the left side of the screen by default). Click the Import button and select your
recently saved CAM file (refer to Figure 13.2.5).

Figure 16.2.4. CAM tab.

© Technosoft 2024 203 CANopen Programming

If the CAM file loaded, it should look like this:

Figure 16.2.5. CAM file loaded.

After loading the CAM file, in the CAM tables section, EasyMotion Studio II will display the free buffer space reserved
for CAM Tables.

In the Memory Settings tab, located under the Application tree, EasyMotion Studio II automatically calculates and
displays the space required for the uploaded CAM file. Additionally, this tab allows you to adjust the memory allocation
reserved for CAM tables as needed.

Figure 16.2.6. Memory settings - CAM tables

In the Memory Settings window, you will find charts for both EEPROM and RAM memory.

• In the EEPROM memory chart, locate the first address listed. This is the CAM Table Load Address, which
must be entered later in object Object 2019h: CAM table load address.

• In the RAM memory chart, identify the first address listed. This is the CAM Table Run Address, which must
be entered later in object Object 201Ah: CAM table run address.

© Technosoft 2024 204 CANopen Programming

Figure 16.2.7. Cam table load and run addresses.

After loading the CAM file successfully, click over the Application tab and download your saved cam file.

Figure 16.2.8. Download CAM Tables.

To generate a SW file that includes the CAM file, save the project and navigate to Application -> EEPROM file ->
Motion and Setup... as shown in the figure below. Save the resulting EEPROM file, which contains your setup and
motion data (including the CAM data), to your PC.

Figure 16.2.9. Create .sw file.

© Technosoft 2024 205 CANopen Programming

16.2.6.1 Extracting the cam data from the motion and setup .sw file

Open the recently saved .sw file using any text editor. Locate the number corresponding to the CAM Table load address
by searching within the file. This number will be preceded by an empty line (as shown in Figure 13.2.11), with the
preceding numbers representing the setup data. Select all the numbers that correspond to the CAM file, continuing until
you encounter another empty line (as illustrated in Figure 13.2.12).

Figure 16.2.10. .sw file structure example

Figure 16.2.11. .sw file empty line

Copy all the selected numbers and save them as a new text file, changing the extension from .txt to .sw. You now have
a file that can be loaded onto the drive using the EEPROM Programmer tool (included with EasyMotion Studio II
software) or by utilizing the Object 2064h: Read/Write Configuration Register and Object 2065h: Write 16/32 bits data at
address set in Read/Write Configuration Register objects, as explained in the following subchapter.

Figure 16.2.12. THS EEPROM Programmer

Note: The THS EEPROM programmer allows you to write the entire setup and motion .sw file, not just the CAM .sw file
created in this example.

16.2.6.2 Downloading a CAM .sw file with objects 2064h and 2065h example

In order to download the data block pointed by the red arrow found in “Figure 16.2.10. .sw file structure example”, first
the block start address i.e. 5638h must be set using an SDO access to object 2064h:

COB-ID Data

606 23 64 20 00 08 00 38 56

The above configuration command also indicates that the next read or write operation shall be executed with drive’s
EEPROM memory using 16-bit data and auto increment of address. All the numbers from the lines after 5638h until the
following blank line represent data to write in the EEPROM memory at consecutive addresses starting with 5638h. The
data writes are done using an SDO access to object 2065h. First data word C400h is written using:

COB-ID Data

606 23 65 20 00 00 C4 00 00

Next data word 0000h is written with:

COB-ID Data

606 23 65 20 00 00 00 00 00

do this, until the end the CAM .sw file.

© Technosoft 2024 206 CANopen Programming

16.3 Electronic camming through CAN example

This example is split in two parts:
Part1: Start an Electronic Camming Slave on CAN
First load a cam table onto the drive as presented in chapter Electronic camming through CAN example.
Start remote node. Send a NMT message to start the node id 6.
Send the following message:

COB-ID Data

0 01 06

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the shutdown
command via Controlword associated PDO.
Send the following message:

COB-ID Data

206 06 00

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command via
Controlword associated PDO.
Send the following message:

COB-ID Data

206 07 00

Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.
Send the following message:

COB-ID Data

206 0F 00

External reference type. Slave receives reference through CAN.
Send the following message (SDO access to object 201Dh):

COB-ID Data

606 2B 1D 20 00 01 00 00 00

Cam table load address. Set cam table load address as 5638h.
The cam table load address can be discovered as explained in chapter0 .
Send the following message (SDO access to object 2019h):

COB-ID Data

606 2B 19 20 00 1E 5A 00 00

Cam table run address. Set cam table load address as 97F6h.
The cam table run address can be discovered as explained in chapter “

Building a CAM profile and saving it as an .sw file example” .
Send the following message (SDO access to object 201Ah):

COB-ID Data

606 2B 1A 20 00 F6 97 00 00

Modes of operation. Select Electronic Camming mode.
Send the following message (SDO access to object 6060h, 8-bit value -2):

COB-ID Data

606 2F 60 60 00 FE 00 00 00

Master resolution. Set the master resolution.
Send the following message (SDO access to object 2012h, 32-bit value 2000):

COB-ID Data

606 23 12 20 00 D0 07 00 00

Cam offset. Set cam offset to 6000 counts (1770h).
If the master resolution is 2000 counts/revolution, the slave shall start applying the cam when the master is at position
6000 + CamX value.
Send the following message (SDO access to object 201Bh, 32-bit value 1770h):

COB-ID Data

606 23 1B 20 00 70 17 00 00

Cam input scaling factor. Set it to 1 (10000h corresponds to a scaling factor of 1.0).
Send the following message (SDO access to object 206Bh, 32-bit value 10000h):

COB-ID Data

606 23 6B 20 00 00 00 01 00

Cam output scaling factor. Set it to 1 (10000h corresponds to a scaling factor of 1.0).
Send the following message (SDO access to object 206Ch, 32-bit value 10000h):

COB-ID Data

606 23 6C 20 00 00 00 01 00

Enable ECAM slave mode in Controlword associated PDO.
Send the following message:

COB-ID Data

206 3F 00

The slave shall start moving and applying the cam after the master starts.

Part2: Start an electronic camming master on CAN.

1. Start remote node. Send a NMT message to start the node id 7.

© Technosoft 2024 207 CANopen Programming

Send the following message:

COB-ID Data

0 01 07

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

207 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

207 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

207 0F 00

5. Modes of operation. Select speed mode.
Send the following message (SDO access to object 6060h, 8-bit value 3h):

COB-ID Data

607 2F 60 60 00 03 00 00 00

6. Target Velocity. Set speed to 15 IU.
Send the following message (SDO access to object 60FFh, 32-bit value Fh):

COB-ID Data

607 23 FF 60 00 00 00 0F 00

The master motor should start rotating with 15IU speed.
7. Master Settings. Set the drive as master and program it to send it’s reference to axis 6.

Send the following message (SDO access to object 2010h 16-bit value 8006h):

COB-ID Data

607 2B 10 20 00 06 80 00 00

After the master is at position 6000 IU (cam offset), the slave (axis 06) shall rotate depending on the set cam values.

© Technosoft 2024 208 CANopen Programming

17 External Reference Position Mode

17.1 Overview

In this operating mode, the drive performs position control with the demand position read from the external reference
provided by another device.

There are 2 types of external references:

❑ Analogue – read by the drive via a dedicated analogue input (12-bit resolution)

❑ Online – received online via the CAN bus communication channel from the CANopen master in object External
On-line Reference (Object 201Ch: External On-line Reference)

The reference type is selected with object External Reference Type (Object 201Dh: External Reference Type).

In external reference position mode with analogue or online reference, you can limit the maximum speed at sudden
changes of the position reference and thus to reduce the mechanical shocks. This feature is activated by setting
Controlword.6=1 and the maximum speed value in object Profile Velocity (Object 6081h: Profile velocity).

Remark: The External Reference Position control mode is available with firmware version 508x/509x; F523x/524x and
F514x.

17.1.1 Controlword in external reference position mode

MSB LSB

See 6040h Halt
See
6040h

Reserved
Activate Speed
Limitation

Enable External
Position Mode

See 6040h

15 9 8 7 6 5 4 3 0

Table 17.1 – Controlword bit description for External Reference Position mode

Name Value Description

Enable External Position Mode
0 No action

0->1 External position mode active

Activate Speed Limitation
0 Do not limit speed on the inactive to active mode transition

1
Limit speed when enabling the External Position mode with
the value set in object 6081h

Halt
0 Execute the instruction of bit 4

1 Stop drive with profile acceleration

In order to correctly set an external reference position mode, you have to set the way the reference is received (either
on-line or analogue), using the object Object 201Dh: External Reference Type.

17.1.2 Statusword in external reference position mode

MSB LSB

See 6041h
Following
error

Reserved See 6041h
Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 17.2 – Statusword bit description for External Reference Position mode

Name Value Description

Target reached

0
Halt = 0: Always 0
Halt = 1: Drive decelerates

1
Halt = 0: Always 0
Halt = 1: Velocity of drive is 0

Following error
0 No following error

1 Following error occurred

17.2 External Reference Position Mode Objects

17.2.1 Object 201Ch: External On-line Reference

This object is used to set the reference in case the External Reference Type (Object 201Dh: External Reference Type)
is set for online. The unit for this object is the internal unit defined for each external reference mode (position / speed /
torque).

For the external reference position mode, all 32bits are used.

© Technosoft 2024 209 CANopen Programming

Object description:

Index 201Ch

Name External online reference

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping Possible

Units Internal, operating mode dependent

Value range INTEGER32

Default value 0

17.3 External reference position profile example

1. Start remote node. Send a NMT message to start the node id 6.
Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. External reference type. Slave receives reference through CAN.
Send the following message (SDO access to object 201Dh):

COB-ID Data

606 2B 1D 20 00 01 00 00 00

6. Mode of operation. Select External reference position mode.
Send the following message (SDO access to object 6060h, 8-bit value FDh):

COB-ID Data

606 2F 60 60 00 FD 00 00 00

7. Enable external position mode. Set bit 4 from 0 to 1 in Controlword associated PDO.
Send the following message:

COB-ID Data

206 1F 00

8. Move to 500 IU . Write 500 (0x01F4) into the external online reference object. The motor will jump in 1 control
loop (1ms default) from its actual position to the absolute value 500 IU.

Send the following message (SDO access to object 201Ch 32-bit value 000001F4h):

COB-ID Data

606 23 1C 20 00 F4 01 00 00

9. Move to 1000 IU . Write 1000 (0x03E8) into the external online reference object. The motor will jump in 1
control loop (1ms default) from its actual position to the absolute value 1000 IU.

Send the following message (SDO access to object 201Ch 32-bit value 000003E8h):

COB-ID Data

606 23 1C 20 00 E8 03 00 00

Remark: if the drive is at position 0 and 500 is written in 201Ch while in external position mode, the motor will jump to
position 500 in 1 control loop. This means that the velocity of the motor is 500 IU. To avoid moving with too high
velocities, bit5 of Controlword can be set. With bit 5 set, the maximum velocity between external reference points
received at 201Ch will be the speed value defined in object 6081h.

© Technosoft 2024 210 CANopen Programming

18 External Reference Speed Mode

18.1 Overview

In this mode, the drive performs speed control with demand velocity read from the external reference provided by other
devices.
There are 2 types of external references:
❑ Analogue – read by the drive via a dedicated analogue input (12-bit resolution)
❑ Online – received online via the CAN bus communication channel from the CANopen master in object External
On-line Reference (Object 201Ch: External On-line Torque Reference)
The reference type is selected with object External Reference Type (Object 201Dh: External Reference Type).
In external reference speed mode, you can limit the maximum acceleration at sudden changes of the speed reference
and thus to get a smoother transition. This feature is activated by setting Controlword.5=1 and the maximum acceleration
value in object Profile Acceleration (Object 6083h: Profile acceleration).
Remark: The External Reference Position control mode is available with firmware version 508x/509x; F523x/524x and
F514x.

18.1.1 Controlword in external reference speed mode

MSB LSB

See 6040h Halt
See
6040h

Reserved
Activate
Acceleration
Limitation

Enable External
Speed Mode

See 6040h

15 9 8 7 6 5 4 3 0

Table 18.1 – Controlword bit description for External Reference Speed Mode

Name Value Description

Enable External
Speed Mode

0 No action

0->1 External speed mode active

Activate Speed
Limitation

0 Do not limit acceleration on the inactive to active mode transition

1
Limit acceleration when enabling the External Speed mode with the
value defined in object 6083h

Halt
0 Execute the instruction of bit 4

1 Stop drive with profile acceleration

18.1.2 Statusword in external reference speed mode

MSB LSB

See 6041h
Max slippage
error

Speed
See
6041h

Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 18.2 – Statusword bit description for External Reference Speed Mode

Name Value Description

Target reached
0

Halt = 0: Always 0
Halt = 1: Drive decelerates

1
Halt = 0: Always 0
Halt = 1: Velocity of drive is 0

Speed
0 Speed is not equal to 0

1 Speed is equal to 0

Max slippage
error

0 Maximum slippage not reached

1 Maximum slippage reached

Remark: In order to set / reset bit 12, the object from index Object 606Fh: Velocity threshold from profile velocity mode
will be used. If the actual velocity of the drive / motor is below the velocity threshold, then bit 12 will be set, else it will
be reset.

18.2 External reference speed mode objects

18.2.1 Object 201Ch: External On-line Speed Reference

This object is used to set the reference in case the External Reference Type (Object 201Dh: External Reference Type)
is set for online. The unit for this object is the internal unit defined for each external reference mode (position / speed /
torque).
For the external reference speed mode, the velocity value is given in internal units. They are encoder increments/Sample
loop. The default Sample loop is 1ms. The velocity variable is 32 bits long and it receives 16.16 data. The MSB takes
the integer part and the LSB takes the fractional part.

© Technosoft 2024 211 CANopen Programming

Example: for a target speed of 50.00 IU, 0x00320000 must be set in 201Ch.

Object description:

Index 201Ch

Name External online reference

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping Possible

Units Internal, operating mode dependent

Value range INTEGER32

Default value 0

18.3 External reference speed profile example

Remark: any speed profile mode can be run only if the speed loop is active in setup.
To enable the Current + Speed loop, in the setup part, under Control settings section select:

After the speed is selected, the tuning for the speed loop must be done.
To enable the Current + Speed + Position loop, select:

After all three loops are selected, the tuning for the speed and position must be done again.

1. Start remote node. Send a NMT message to start the node id 6.
Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

© Technosoft 2024 212 CANopen Programming

COB-ID Data

206 0F 00

5. External reference type. Slave receives reference through CAN.
Send the following message (SDO access to object 201Dh):

COB-ID Data

606 2B 1D 20 00 01 00 00 00

6. Mode of operation. Select External reference speed mode.
Send the following message (SDO access to object 6060h, 8-bit value FCh):

COB-ID Data

606 2F 60 60 00 FC 00 00 00

7. Enable external speed mode. Set bit 4 from 0 to 1 in Controlword associated PDO.
Send the following message:

COB-ID Data

206 1F 00

8. Set velocity to 2 IU . Write 2 * 65536 (0x20000) into the external online reference object. The motor will start
rotating with the speed 2 IU in 1 control loop (1ms default) from its actual speed to the value 2 IU.

Send the following message (SDO access to object 201Ch 32-bit value 00020000h):

COB-ID Data

606 23 1C 20 00 00 00 02 00

9. Set velocity to 8 IU . Write 8 * 65536 (0x80000) into the external online reference object. The motor will start
rotating with the speed 8 IU in 1 control loop (1ms default) from its actual speed to the value 8 IU.

Send the following message (SDO access to object 201Ch 32-bit value 00080000h):

COB-ID Data

606 23 1C 20 00 00 00 08 00

© Technosoft 2024 213 CANopen Programming

19 External Reference Torque Mode

19.1 Overview

In this mode, the drive is controlled in torque mode and the external reference is interpreted as torque/current reference.

There are 2 types of external references:

❑ Analogue – read by the drive via a dedicated analogue input (12-bit resolution)

❑ Online – received online via the CAN bus communication channel from the CANopen master in Object 201Ch:
External On-line Reference.

The reference type is selected with Object 201Dh: External Reference Type.

Remark: The External Reference Position control mode is available with firmware version 508x/509x; F523x/524x and
F514x.

19.1.1 Controlword in external reference torque mode

MSB LSB

See 6040h Halt
See
6040h

Reserved Reserved
Enable External
Torque Mode

See 6040h

15 9 8 7 6 5 4 3 0

Table 19.1 – Controlword bit description for External Reference Torque Mode

Name Value Description

Enable External
Torque Mode

0 No action

0->1 External torque mode active

Halt
0 Execute the instruction of bit 4

1 Stop drive – set torque reference to 0

19.1.2 Statusword in external reference torque mode

MSB LSB

See 6041h Reserved Reserved See 6041h
Target
reached

See 6041h

15 14 13 12 11 10 9 0

Table 19.2 – Statusword bit description for External Reference Torque Mode

Name Value Description

Target reached Always 0

19.2 External reference torque mode objects

19.2.1 Object 201Ch: External On-line Torque Reference

This object is used to set the reference in case the External Reference Type (Object 201Dh: External Reference Type)
is set for online. The unit for this object is the internal unit defined for each external reference mode (position / speed /
torque).

For the external reference torque mode, the torque (current) command is given in the MSB of the 32bits of data that
must be written in 201Ch.

Object description:

Index 201Ch

Name External online reference

Object code VAR

Data type INTEGER32

Entry description:

Access RW

PDO mapping Possible

Units Internal, operating mode dependent

Value range INTEGER32

Default value 0

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈] = 65520 ⋅ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴]2 ⋅ 𝐼𝑝𝑒𝑎𝑘

© Technosoft 2024 214 CANopen Programming

where Ipeak is the peak current supported by the drive and current[IU] is the command value for object 201Ch that must
be set in the MSB of the 32bit value.

19.2.2 Object 6077h: Torque actual value

This is used to provide the actual value of the current running through the motor. It corresponds to the instantaneous
torque in the motor. The value is given in IU.

Object description:

Index 6077h

Name Torque actual value

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping Yes

Value range -32768 … 32767

Default value No

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 6077h.

19.2.3 Object 207Eh: Current actual value1

The object displays the motor current actual value. This value is given in current internal units.

Object description:

Index 207Eh

Name Current actual value

Object code VAR

Data type INTEGER16

Entry description:

Access RO

PDO mapping YES

Units -

Value range -32768 … 32767

Default value No

The computation formula for the current [IU] in [A] is: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝐴] = 2 ⋅ 𝐼𝑝𝑒𝑎𝑘65520 ⋅ 𝑐𝑢𝑟𝑒𝑛𝑡[𝐼𝑈]
where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 207Eh.

19.3 External reference torque profile example

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

1 Available only with firmware version F508I / F509I and above

© Technosoft 2024 215 CANopen Programming

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. External reference type. Slave receives reference through CAN.

Send the following message (SDO access to object 201Dh):

COB-ID Data

606 2B 1D 20 00 01 00 00 00

6. Mode of operation. Select External reference torque mode.

Send the following message (SDO access to object 6060h, 8-bit value FBh):

COB-ID Data

606 2F 60 60 00 FB 00 00 00

7. Enable external torque mode. Set bit 4 from 0 to 1 in Controlword associated PDO.

Send the following message:

COB-ID Data

206 1F 00

8. Set torque to 0.2A for an iPOS4808 (any version) . Write 328 * 65536 (0x1480000) into the external online
reference object. The motor will start applying a positive 0.2A current on the motor in 1 control loop (1ms
default) from its actual value.

Send the following message (SDO access to object 201Ch 32-bit value 01480000h):

COB-ID Data

606 23 1C 20 00 00 00 48 01

9. Set torque to 0.4A for an iPOS4808 (any version) . Write 655 * 65536 (0x28F0000) into the external online
reference object. The motor will start applying a positive 0.4A current on the motor in 1 control loop (1ms
default) from its actual value.

Send the following message (SDO access to object 201Ch 32-bit value 028F0000h):

COB-ID Data

606 23 1C 20 00 00 00 8F 02

10. Read the value of torque (current) actual value . Read object 6077h.

Send the following message (SDO access to read object 6077h):

COB-ID Data

606 40 77 60 00 00 00 00 00

The read value should be the near the one commanded previously with object 201Ch.

© Technosoft 2024 216 CANopen Programming

20 Touch probe functionality

20.1 Overview

The Touch probe functionality offers the possibility to capture the motor current position when a configurable digital input
trigger event happens.

Remark: do not use the touch probe functionality objects during a homing procedure. It may lead to incorrect results.

20.2 Touch probe objects

20.2.1 Object 60B8h: Touch probe function

This object indicates the configuration function of the touch probe.

Object description:

Index 60B8h

Name Touch probe function

Object code VAR

Data type UNSIGNED16

Entry description:

Access RW

PDO mapping Yes

Value range 0 … 65535

Default value 0

Table 20.1 – Bit Assignment of the Touch probe function

Bit Value Description

14,15 - Reserved

13
0 Switch off sampling at negative edge of touch probe 2

1 Enable sampling at negative edge of touch probe 2*

12
0 Switch off sampling at positive edge of touch probe 2

1 Enable sampling at positive edge of touch probe 2*

11,10

00b Trigger with touch probe 2 input (LSN input)

01b Trigger with zero impulse signal

10b Reserved

11b Reserved

9
0 Trigger first event

1 Reserved

8
0 Switch off touch probe 2

1 Enable touch probe 2

7 - Reserved

6

0
Enable limit switch functionality. The motor will stop, using quickstop
deceleration, when a limit switch is active.

1
Disable limit switch functionality. The motor will not stop when a limit switch is
active.

5
0 Switch off sampling at negative edge of touch probe 1

1 Enable sampling at negative edge of touch probe 1*

4
0 Switch off sampling at positive edge of touch probe 1

1 Enable sampling at positive edge of touch probe 1*

3,2

00b Trigger with touch probe 1 input (LSP input)

01b Trigger with zero impulse signal

10b Reserved

11b Reserved

1
0 Trigger first event

1 Reserved

0
0 Switch off touch probe 1

1 Enable touch probe 1

*Remarks:

The position cannot be captured on both positive and negative edges simultaneously using the zero impulse signal as
a trigger.

The position cannot be captured when touch probe 1 and 2 are active and the trigger is set on the zero impulse signal.

© Technosoft 2024 217 CANopen Programming

The following bit settings are reserved:

-Bit 3 and Bit2 = 1;

-Bit 13 and Bit12 = 1;

-Bit11 and Bit2 = 1;

The homing procedures also utilize the capture function. Using this object during a homing procedure may lead to
unforeseen results.

20.2.2 Object 60B9h: Touch probe status

This object provides the status of the touch probe.

Object description:

Index 60B9h

Name Touch probe status

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping Yes

Value range 0 … 65535

Default value 0

Table 20.2 – Bit Assignment of the Touch probe status

Bit Value Description

11 to 15 - Reserved

10
0 Touch probe 2 no negative edge value stored

1 Touch probe 2 negative edge position stored in object 60BDh

9
0 Touch probe 2 no positive edge value stored

1 Touch probe 2 positive edge position stored in object 60BCh

8
0 Touch probe 2 is switched off

1 Touch probe 2 is enabled

7 - Reserved

6
0 Limit switch functionality enabled.

1 Limit switch functionality disabled.

3 to 5 - Reserved

2
0 Touch probe 1 no negative edge value stored

1 Touch probe 1 negative edge position stored in object 60BBh

1
0 Touch probe 1 no positive edge value stored

1 Touch probe 1 positive edge position stored in object 60BAh

0
0 Touch probe 1 is switched off

1 Touch probe 1 is enabled

Note: Bit 1 and bit 2 are set to 0 when touch probe 1 is switched off (Object 60B8h: Touch probe function bit 0 is 0). Bit
9 and 10 are set to 0 when touch probe 2 is switched off (object 60B8h bit 8 is 0). Bits 1,2,9 and 10 are set to 0 when
object 60B8h bits 4,5,12 and 13 are set to 0.

20.2.3 Object 60BAh: Touch probe 1 positive edge

This object provides the position value of the touch probe 1 at positive edge.

Object description:

Index 60BAh

Name Touch probe 1 positive edge

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping YES

Value range -231…231-1

Default value -

20.2.4 Object 60BBh: Touch probe 1 negative edge

This object provides the position value of the touch probe 1 at negative edge.

Object description:

© Technosoft 2024 218 CANopen Programming

Index 60BBh

Name Touch probe 1 negative edge

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping YES

Value range -231…231-1

Default value -

20.2.5 Object 60BCh: Touch probe 2 positive edge

This object provides the position value of the touch probe 2 at positive edge.

Object description:

Index 60BCh

Name Touch probe 2 positive edge

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping YES

Value range -231…231-1

Default value -

20.2.6 Object 60BDh: Touch probe 2 negative edge

This object provides the position value of the touch probe 2 at negative edge.

Object description:

Index 60BDh

Name Touch probe 2 negative edge

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping YES

Value range -231…231-1

Default value -

20.2.7 Object 2104h24F

1: Auxiliary encoder function

This object configures the auxiliary feedback position capture on the zero impulse signal.

Object description:

Index 2104h

Name Auxiliary encoder function

Object code VAR

Data type UNSIGNED8

Entry description:

Access RW

PDO mapping Yes

Value range 0 … 65535

Default value 0

Table 20.3 – Bit Assignment of the Auxiliary encoder function

Bit Value Description

7..6 - Reserved

5
0 Switch off sampling at negative edge of touch probe

1* Enable sampling at negative edge of touch probe

1 Object 2104h applies only to drives which have a secondary feedback input with an index signal

© Technosoft 2024 219 CANopen Programming

4
0 Switch off sampling at positive edge of touch probe

1* Enable sampling at positive edge of touch probe

3 - Reserved

2
0 Reserved

1 Trigger with zero impulse signal

1 - Reserved

0
0 Switch off touch probe

1 Enable touch probe

*Remark

The position cannot be captured on both positive and negative edges simultaneously using the zero impulse signal as
a trigger.

20.2.8 Object 2105h25F

1: Auxiliary encoder status

This object provides the status of the auxiliary feedback touch probe.

Object description:

Index 2105h

Name Auxiliary encoder status

Object code VAR

Data type UNSIGNED8

Entry description:

Access RO

PDO mapping Yes

Value range 0 … 65535

Default value 0

Table 20.4 – Bit Assignment of the Auxiliary encoder status

Bit Value Description

7 to 3 - Reserved

2

0 Auxiliary feedback touch probe no negative edge value stored

1
Auxiliary feedback touch probe negative edge position stored in

Object 2107h27F: Auxiliary encoder captured position negative edge

1

0 Auxiliary feedback touch probe no positive edge value stored

1
Auxiliary feedback touch probe positive edge position stored in Object 2106h26F:
Auxiliary encoder captured position positive edge

0
0 Auxiliary feedback touch probe is switched off

1 Auxiliary feedback touch probe is enabled

Note: Bit 1 and bit 2 are set to 0 when auxiliary feedback touch probe is switched off (Object 2104h24F: Auxiliary encoder
function bit 0 is 0). Bits 1 and 2 are set to 0 when object 2104h bits 4 and 5 are set to 0.

20.2.9 Object 2106h26F

2: Auxiliary encoder captured position positive edge

This object provides the position value of the auxiliary feedback captured at positive edge.

Object description:

Index 2106h

Name
Auxiliary encoder captured positive
edge

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping YES

Value range -231…231-1

Default value -

1 Object 2105h applies only to drives which have a secondary feedback input with an index signal
2 Object 2106h applies only to drives which have a secondary feedback input with an index signal

© Technosoft 2024 220 CANopen Programming

20.2.10 Object 2107h27F

1: Auxiliary encoder captured position negative edge

This object provides the position value of the auxiliary feedback captured at negative edge.

Object description:

Index 2107h

Name
Auxiliary encoder captured position
negative edge

Object code VAR

Data type INTEGER32

Entry description:

Access RO

PDO mapping YES

Value range -231…231-1

Default value -

20.3 Touch probe example

In this example, the touch probe 1 will be enabled to capture the position when the positive limit switch LSP is
triggered on the positive edge while moving the motor in trapezoidal mode.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data

0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data

206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data

206 0F 00

5. Modes of operation. Select position mode.

Send the following message (SDO access to object 6060h, 8-bit value 1h):

COB-ID Data

606 2F 60 60 00 01 00 00 00

6. Target position. Set the target position to 5 rotations. By using a 500 lines incremental encoder the
corresponding value of object 607Ah expressed in encoder counts is 2710h.

Send the following message (SDO access to object 607Ah 32-bit value 00002710h):

COB-ID Data

606 23 7A 60 00 10 27 00 00

7. Target speed. Set the target speed normally attained at the end of acceleration ramp to 2 IU (low speed).

Send the following message (SDO access to object 6081h, 32-bit value 00020000h):

COB-ID Data

606 23 81 60 00 00 00 02 00

8. Set touch probe function to 0x11. Set touch probe function to enable touch probe 1, touch probe 1 to be the
positive limit switch LSP, capture the position on the positive edge of the signal (when LSP goes low to high).

1 Object 2107h applies only to drives which have a secondary feedback input with an index signal

© Technosoft 2024 221 CANopen Programming

Send the following message (SDO access to object 60B8h, 16-bit value 0011h):

COB-ID Data

606 2B B8 60 00 11 00 00 00

9. Read touch probe status. Read touch probe status.

Send the following message (SDO read access to object 60B9h):

COB-ID Data

606 40 B9 60 00 00 00 00 00

If the read value is 0x0001 it means that touch probe 1 is active (bit0=1) and a capture was detected on the positive
edge (bit1=1).

10. Start the profile.

Send the following message

COB-ID Data

206 1F 00

11. While the motor is moving, trigger the LSP input. The motor should stop.

12. Read touch probe status. Read touch probe status.

Send the following message (SDO read access to object 60B9h):

COB-ID Data

606 40 B9 60 00 00 00 00 00

If the read value is 0x0003 it means that touch probe 1 is active (bit0=1) and no capture was detected on the
positive edge (bit1=0).

13. Read the touch probe 1 positive edge captured value..

Send the following message (SDO read access to object 60BAh):

COB-ID Data

606 40 BA 60 00 00 00 00 00

If the read value should be close to the value of motor actual position (6064h). When the capture was detected, the
motor was moving. The limit switch caused the motor to decelerate and stop after the even occurred.

© Technosoft 2024 222 CANopen Programming

21 Data Exchange between CANopen master and drives

21.1 Checking Setup Data Consistency

During the configuration phase, a CANopen master can quickly verify using the checksum objects and a reference .sw
file whether the non-volatile EEPROM memory of the drive contains the right information. If the checksum reported by
the drive does not match the one computed from the .sw file, the CANopen master can download the entire .sw file into
the drive EEPROM using the communication objects for writing data into the drive EEPROM.

In order to be able to inspect or to program any memory location of the drive, as well as for downloading of a new TML
program (application software), three manufacturer specific objects were defined: Object 2064h: Read/Write
Configuration Register, Object 2065h: Write 16/32 bits data at address set in Read/Write Configuration Register, Object
2066h: Read 16/32 bits data from address set in Read/Write Configuration Register, Object 2067h: Write data at specified
address.

21.2 Image Files Format and Creation

An image file with the .sw extension is essentially a text file that can be opened and read using any text editor.
It consists of blocks of data, each separated by an empty line. Every block begins with a block start address, followed
by data values that are written sequentially to ascending memory addresses. Specifically:

• The first data value is written to the block start address.

• The second data value is written to the start address + 1, and so on.

All data values are represented as 16-bit hexadecimal numbers (up to 4 hexadecimal digits). Each line contains
a single data value, and any value with fewer than 4 digits must be right-aligned. For instance, the value 42 corresponds
to 0x0042.

A software file can contain up to 4 sections:

1. TML program

2. setup table

3. product and application ID

4. setup table start address

The .sw files can be created using EasyMotion Studio II (both full and lite versions) by navigating to:
Application | Export | EEPROM Programmer File | Motion and Setup or Setup Only.

• The Motion and Setup option generates a .sw file containing comprehensive data, including setup
configurations, TML programs, cam tables (if applicable), and drive/motor configuration IDs.

• The Setup Only option creates a .sw file with just the setup data and configuration IDs.

The .sw file can be programmed into a drive using the following methods:

1. From a CANopen master, utilizing communication objects to write data into the drive's EEPROM.

2. Using the EEPROM Programmer tool, included with EasyMotion Studio II, which is designed for quick,
repetitive programming of .sw files into Technosoft drives during production.

21.3 Data Exchange Objects

21.3.1 Object 2064h: Read/Write Configuration Register

Object Read/Write Configuration Register 2064h is used to control the read from drive memory and write to drive memory
functions. This object contains the current memory address that will be used for a read/write operation. It can also be
specified through this object the type of memory used (EEPROM, data or program) and the data type the next read/write
operation refers to. Additionally, it can be specified whether an increment of the memory address should be performed
or not after the read or write operation. The auto-increment of the memory address is particularly important in saving
valuable time in case of a program download to the drive as well when a large data block should be read from the
device.

Object description:

Index 2064h

Name Read/Write configuration register

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping Possible

Units -

Value range 0 … 232-1

Default value 0x84

© Technosoft 2024 223 CANopen Programming

Table 21.1 – Read/Write Configuration Register bit description

Bit Value Description

31…16 x 16-bit memory address for the next read/write operation

15…8 0 Reserved (always 0)

7
0 Auto-increment the address after the read/write operation

1 Do not auto-increment the address after the read/write operation

6…4 0 Reserved (always 0)

3,2

00 Memory type is program memory

01 Memory type is data memory

10 Memory type is EEPROM memory

11 Reserved

1 0 Reserved (always 0)

0
0 Next read/write operation is with a 16-bit data

1 Next read/write operation is with a 32-bit data

21.3.2 Object 2065h: Write 16/32 bits data at address set in Read/Write Configuration Register

The object is used to write 16 or 32-bit values using the parameters specified in Object 2064h: Read/Write Configuration
Register. After the successful write operation, the memory address in object 2064h, bits 31…16 will be auto-incremented
or not, as defined in the same register. The auto-incrementing of the address is particularly useful in downloading a
program (software application) in the drives memory.

Object description:

Index 2065h

Name
Write data at address set in 2064h
(16/32 bits)

Object code VAR

Data type UNSIGNED32

Entry description:

Access WO

PDO mapping Possible

Units -

Value range 0 … 232-1

Default value No

The structure of the parameter is the following:

Bit Value Description

31…16
0 Reserved if bit 0 of object 2064h is 0 (operation on 16 bit variables)

X 16-bit MSB of data if bit 0 of object 2064h is 1 (operation on 32 bit variables)

15…0 X 16 bit LSB of data

21.3.3 Object 2066h: Read 16/32 bits data from address set in Read/Write Configuration Register

This object is used to read 16 or 32-bit values with parameters that are specified in Object 2064h: Read/Write
Configuration Register. After the successful read operation, the memory address in object 2064h, bits 31…16, will be
auto-incremented or not, as defined in the same register.

Object description:

Index 2066h

Name
Read data from address set in 2064h
(16/32 bits)

Object code VAR

Data type UNSIGNED32

Entry description:

Access RO

PDO mapping No

Units -

Value range UNSIGNED32

Default value No

The structure of the parameter is the following:

Bit Value Description

31…16
0 Reserved if bit 0 of object 2064h is 0 (operation on 16 bit variables)

X 16-bit MSB of data if bit 0 of object 2064h is 1 (operation on 32 bit variables)

15…0 X 16 bit LSB of data

© Technosoft 2024 224 CANopen Programming

21.3.4 Object 2067h: Write data at specified address

This object is used to write a single 16-bit value at a specified address in the memory type defined in object 2064h –
Read/Write Configuration Register. The rest of the bits in object 2064h do not count in this case, e.g. the memory
address stored in the Read/Write Control Register is disregarded and also the control bits 0 and 7. The object may be
used to write only 16-bit data. Once the type of memory in the Read/Write Control Register is set, the object can be
used independently. If mapped on a PDO, it offers quick access to any drive internal variable.

Object description:

Index 2067h

Name Write data at specified address

Object code VAR

Data type UNSIGNED32

Entry description:

Access WO

PDO mapping Possible

Units -

Value range UNSIGNED32

Default value No

Bit Value Description

31…16 x 16-bit memory address

15…0 X 16 bit data value to be written

21.3.4.1 Writing 16 bit data to a specific address using object 2067h example

Considering the following variable found in variables.xml in the /Firmwares/F514I folder:

UINT POSOKLIM @0x036A. It means that it is found at address 0x036A.

Write the data 0x1234 to address 0x036A using SDO access to object 2067h:

COB-ID Data

606 23 67 20 00 34 12 6A 03

21.3.5 Object 2069h: Checksum configuration register

This object is used to specify a start address and an end address for the drive to execute a checksum of the E2ROM
memory contents. The 16 LSB of this object are used for the start address of the checksum, and the 16 MSB for the
end address of the checksum.

Note: The end address of the checksum must be computed as the start address to which you add the length of the
section to be checked. The drive will actually compute the checksum for the memory locations between start address
and end address.

The checksum is computed as a 16 bit unsigned addition of the values in the memory locations to be checked. When
the object is written through SDO access, the checksum will be computed and stored in the read-only Object 206Ah:
Checksum read register.

Object description:

Index 2069h

Name Checksum configuration register

Object code VAR

Data type UNSIGNED32

Entry description:

Access RW

PDO mapping No

Units -

Value range UNSIGNED32

Default value No

The structure of the parameter is the following:

Bit Value Description

31…16 X 16-bit end address of the checksum

15…0 X 16 bit start address of the checksum

© Technosoft 2024 225 CANopen Programming

21.3.6 Object 206Ah: Checksum read register

This object stores the latest computed checksum.

Object description:

Index 206Ah

Name Checksum read register

Object code VAR

Data type UNSIGNED16

Entry description:

Access RO

PDO mapping No

Units -

Value range UNSIGNED16

Default value No

21.4 Downloading an image file (.sw) to the drive using CANopen objects example

The structure of an image file (.sw) is described in paragraph 18.2 and shown in Figure 18.4.1.

In order to download the data block pointed by the red arrow, first the block start address i.e. 5638h must be set using
an SDO access to object 2064h.

• Send the following message: SDO access to object 2064h, 32-bit value 56380008h.

The above configuration command also indicates that next read or write operation shall be executed with drive’s
EEPROM memory using 16-bit data and auto increment of address. All the numbers from the lines after 5638h until the
following blank line represents data to write in the EEPROM memory at consecutive addresses starting with 5638h. The
data writes are done using an SDO access to object 2065h. First data word C400h is written using:

• Send the following message: SDO access to object 2065h, 32-bit value 0000C400h.

From the whole 32bit number, only C400h will be written and 0000h will be ignored because the write operation was
configured for 16bits in object 2065 h.

Next data word 0000h is written with:

Send the following message: SDO access to object 2065h, 32-bit value 00000000h.

Figure 21.4.1. .sw file structure example

Continue sending the 16 bit data, until the next blank line from the .sw file. Because the next data after a blank line is
again an address, and the above process repeats. Finally to verify the integrity of the information stored in the drive
EEPROM, checksum objects Object 2069h: Checksum configuration register and Object 206Ah: Checksum read register
can be used to compare the checksum computed by the drive with that computed on the master.

Warning!

When object 2064h bit 7=0 (auto-incrementing is ON), do not read the object
list in parallel with a read/write operation using a script. By reading object
2066h in parallel with another application, the target memory address will be
incremented and will lead to incorrect data writing or reading.

© Technosoft 2024 226 CANopen Programming

21.5 Downloading an image file (.sw) to the drive using CANopen objects C# example code

The code presented below is written in C# language and its structure can be used as an example for other programming
languages.

The program itself works on an IXXAT USB to CAN compact interface, together with their software canAnalyzer, which
provides a tool for running C# scripts.

The code uses two functions that are not detailed in this example:

 SendCANmessage(MessageId, MessageData);

The function sends a message over CAN with a configurable COB ID and Data field. The COB ID is declared as a 16bit
integer and the MessageData is declared as a Byte array that can have up to 8 bytes.

Most CAN interfaces offer programming examples that contain such a function.

Wait_for_ID_and_Data(Expected COB ID, Expected DATA);

The function reads the received CAN messages and decides if the Expected COB ID and Expected DATA are the same
as the ones received. It is a BOOL type function, so it returns TRUE if the expected data matched the one received.

Most CAN interfaces offer programming examples that contain a function that reads a CAN message.

If the implementation of such a function is difficult to implement, just replace it with a 4 or 5ms wait time before sending
the next message. This is to make sure that the last SDO write command was read and processed by the drive.

Waiting for an SDO successful write reply from the drive reduces the write time and it is the safest way.

21.5.1 The main script code

It should look like this:

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.Threading;

using System.Collections;

using System.Runtime;

using System.Diagnostics;

using CAN.Interface.Services; //this is just an example; replace it with your interface

namespace THS_checksum_calculator

{

 static class Program

 {

 static void Main(string[] args)

 {

 int AxisID = 6;

 String PathToFile = "c:\\setup1.sw";

 Write_SWfile(AxisID, PathToFile);

 }

 private static void Write_SWfile(int AxisId, String Path)

 {//code

 }

 private static void SendCANmessage(int MessageID, Byte[] messageData)

 {//code

 }

 private static bool Wait_for_ID_and_Data(int MsgId, Byte[] ExpectedData)

 {//code

 }

 }

}

© Technosoft 2024 227 CANopen Programming

21.5.2 The function Write_SWfile code

private static void Write_SWfile(int AxisId, String Path)
 {
 int MessageId = 0x600 + AxisId;
 console.WriteLine("Writing SW file from path : " + Path);
 console.WriteLine("");
 try
 {
 StreamReader sr = File.OpenText(Path);
 String strLine;
 Byte[] LineData;
 Byte[] MessageData;
 bool setAddress = true; //because the first line in the .sw is an
address, start with setAddress TRUE.
 while (null != (strLine = sr.ReadLine()))
 {

 if (strLine == "") //checks for blank spaces with no data
 {
 setAddress = true;
 continue;
 }
 if (setAddress) //if setAddress TRUE, set the current file data
stream as address in 2064h.
 {
 LineData = BitConverter.GetBytes(Int16.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));
 MessageData = new Byte[8] { 0x23, 0x64, 0x20, 0x00, 0x08, 0x00,
0x00, 0x00 };
 MessageData[6] = LineData[0];
 MessageData[7] = LineData[1]; //Bytes 6 & 7 contain the
section start address

 SendCANmessage(MessageId, MessageData); //Send the previously
defined CAN message
 while (!Wait_for_ID_and_Data((0x580 + AxisId), new byte[3] {
0x60, 0x64, 0x20 })) { } //wait for SDO confirmation
 //The function Wait_for_ID_and_Data returns TRUE when it
receives a successful SDO reply from the drive:
 //Id 0x580 + AxisNr. and Data 0x60 0xYY 0xXX; where 0xXXYY is
the object that was written.
 console.WriteLine("Writing data section starting from address
0x" + Convert.ToString(BitConverter.ToUInt16(LineData, 0), 16)); //Displays the start
address of each .sw data segment
 console.WriteLine("");
 setAddress = false;
 continue;
 }
 LineData = BitConverter.GetBytes(Int16.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));
 MessageData = new Byte[8] { 0x23, 0x65, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00 };
 MessageData[4] = LineData[0];
 MessageData[5] = LineData[1]; //Bytes 4 & 5 contain the data from
the .sw file (to be written in the EEPROM of the drive)
 SendCANmessage(MessageId, MessageData);
 while (!Wait_for_ID_and_Data((0x580 + AxisId), new byte[3] { 0x60,
0x65, 0x20 })) {} //wait SDO confirmation
 }
 console.WriteLine("Writing file " + Path+ " ended");
 sr.Close();
 }
 catch (FileNotFoundException e)
 {
 console.WriteLine(e.Message);
 }

 }

© Technosoft 2024 228 CANopen Programming

21.6 Checking and loading the drive setup via SW file using CANopen commands example.

Check the integrity of the setup data on a drive and update it if needed.

Before reading this example, please read paragraph 18.4.

To create a .sw file that contains only the setup data, begin by opening EasyMotion Studio II. From the top menu bar,
select Application, then navigate to Export, and choose EEPROM File followed by Setup Only.... A dialog box will appear
prompting you to select a location to save the file. Once you choose the destination, the .sw file will be generated and
saved to the specified location.

Let’s suppose that the setup data of a Technosoft drive is located at EEPROM addresses between 0x5E06 and 0x5EFF.
Here are the steps to be taken in order to check the setup data integrity and to re-program the drive if necessary:

1. Compute the checksum in the .sw file. Let’s suppose that the computed checksum is 0x1234.
2. Access object 2069h in order to compute the checksum of the setup table located on the drive. Write

the value 0x5EFF5E06

Send the following message: SDO write to object 2069h sub-index 0, 32-bit value 5EFF5E06h.

Following the reception of this message, the drive will compute the checksum of the EEPROM locations 0x5E06 to
0x5EFF. The result is stored in the object 206Ah.

3. Read the computed checksum from object 206Ah.

Read by SDO protocol the value of object 206Ah.

Let us assume the drive returns the following message (Object 206Ah = 0x2345):

As the returned checksum (0x2345) does not match the checksum computed from the .sw file, the setup table has
to be configured from the .sw file.

4. Prepare the Read/Write Configuration Register for EEPROM write. Let us assume the address 0x5E06 is
the first 16 bit number found in the .sw file where setup data begins. Write the value 0x5E060009 into the object
2064h (write 32-bit data at EEPROM address 0x5E06 and auto-increment the address after the write
operation).

Send the following message: SDO write to object 2064h sub-index 0, 32-bit value 5E060009h.

5. Write the sw file data 32 bits at a time. Supposing that the next 2 entries in the .sw file after the start address
0x5E06 are 0x1234 and 0x5678, you have to write the value 0x56781234 into object 2065h.

Send the following message (SDO write to object 2065h sub-index 0, 32-bit value 56781234h):

The number 0x1234 will be written at address 0x5E06 and 0x5678 will be at 0x5E07.

6. Assuming the next data after 0x5678 will be 0x09AB and 0xCDEF, write the value 0xCDEF09AB into object
2065h.

Send the following message (SDO write to object 2065h sub-index 0, 32-bit value CDEF09ABh):

© Technosoft 2024 229 CANopen Programming

The number 0x09AB will be written at address 0x5E08 and 0xCDEF will be at 0x5E09.

7. Repeat step 5 until a blank line is found in the .sw file.

This means that all the setup data is written, even if there is more data after the blank line.

8. Re-check the checksum (repeat steps 2 and 3). If ok, go to step 9

9. Reset the drive in order to activate the new setup.

Send with the Cob ID 0x0 the data 0x81 0x0A. Where 0x0A means Axis ID 10.

Warning!

When object 2064h bit 7=0 (auto-incrementing is ON), do not read the object
list in parallel with a read/write operation using a script. By reading object
2066h in parallel with another application, the target memory address will be
incremented and will lead to incorrect data writing or reading.

21.7 SW file Checksum calculation C# example code

The code presented below is written in C# language and its structure can be used as an example for other programming
languages. The program itself works as standalone. Just create a new console script in Visual Studio C# 2005 or newer
and copy it directly.
This example is made in the same way as the example from 18.5 Downloading an image file (.sw) to the drive using
CANopen objects C# example code and can be easily merged. In this way, a script will download a .sw file and at the
same time calculate the checksum for each section in order to verify it later with object Object 2069h: Checksum
configuration register and Object 206Ah: Checksum read register.
As described in chapter 18.2, the SW file has up to 4 data sections. This script will Display the Start, End address and
Checksum of each section. These three parameters can later be used with objects 2069h and 206Ah to verify the
checksum on the drive after the SW file is downloaded. Later, to verify the data integrity, at each drive start-up, the
checksum can be verified to ensure the correct setup data is present on the drive.

21.7.1 The checksum calculation code

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Threading;
using System.Collections;
using System.Runtime;
using System.Diagnostics;

namespace THS_checksum_calculator
{
 static class Program
 {
 static void Main(string[] args)
 {
 String Path = "c:\\setup1.sw"; //define the SW file path
 CalculateSWfileChecksum(Path);
 }
 private static void CalculateSWfileChecksum(String Path)
 {
 System.Console.WriteLine("");
 System.Console.WriteLine ("Reading SW file from path : " + Path);
 System.Console.WriteLine ("");
 try
 {
 StreamReader sr = File.OpenText(Path);
 String strLine;
 bool setAddress = true; //because the first line in the SW is an
address, start with setAddress TRUE.

© Technosoft 2024 230 CANopen Programming

 UInt16 checksumSW = 0;
 UInt16 StartAddress = 0;
 UInt16 EndAddress = 0;
 Byte[] LineData;
 int swFileSection = 1;
 while (null != (strLine = sr.ReadLine()))
 {
 if (strLine == "") //checks for blank spaces with no data
 {
 System.Console.WriteLine ("End address = 0x" +
EndAddress.ToString("X") + "; High 16bit of object 2069h"); //Display in HEX the
current section End address
 System.Console.WriteLine ("Checksum = 0x" +
(checksumSW).ToString("X") + "; To be compared with object 206Ah value."); //Display in
HEX the current section Checksum value
 System.Console.WriteLine ("");
 checksumSW = 0;
 setAddress = true;
 continue;
 }
 if (setAddress)
 {
 LineData = BitConverter.GetBytes(Int16.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));
 StartAddress = BitConverter.ToUInt16(LineData, 0);
 EndAddress = StartAddress;
 EndAddress--;
 System.Console.WriteLine ("SW file Section " + swFileSection +
" parameters:"); //Display the SW file section
 System.Console.WriteLine ("Start address = 0x" +
StartAddress.ToString("X") + "; Low 16bit of object 2069h"); //Display in HEX the
current section Start address
 swFileSection++; //increment the file section number
 setAddress = false;
 continue;
 }
 EndAddress++;
 LineData = BitConverter.GetBytes(Int16.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));
 checksumSW += BitConverter.ToUInt16(LineData, 0) ;
 }
 System.Console.WriteLine ("Ended reading file " + Path);
 sr.Close();
 Thread.Sleep(5000); //Wait and display results in Debug window before
it closes
 }
 catch (FileNotFoundException e)
 {
 System.Console.WriteLine (e.Message);
 }
 }
 }

}

The output window of the program should look like this:

© Technosoft 2024 231 CANopen Programming

22 Advanced features

Due to its embedded motion controller, a Technosoft intelligent drive offers many programming solutions that may
simplify a lot the task of a CANopen master. This paragraph overviews a set of advanced programming features that
can be used when combining TML programming at drive level with CANopen master control. All features presented
below require usage of EasyMotion Studio II FULL version as TML programming tool.

Remark: If you do not use the advanced features presented below you do not need EasyMotion Studio II FULL version.

22.1 Using EasyMotion Studio II

22.1.1 Starting a new project

EasyMotion Studio II establishes communication with the drive using one of the following interfaces: RS-232 serial link,
USB, or CAN. The appropriate interface depends on the specific drive model and its supported communication
protocols. For detailed information about the supported protocols, refer to the Drive Technical Reference Manual.

To connect to a drive using EasyMotion Studio II, begin by creating a New project. During this process, you’ll select the
communication channel and configure the necessary parameters. Once your settings are in place, use the Scan Ports
option to refresh the list of available ports and choose the correct one for your setup.

Figure 22.1.1. EasyMotion Studio II - Opening window

Once the physical connection is established, click Scan for Drives to initiate the detection process. EasyMotion Studio
II will search for connected drives and display their details in a table, including the drive name, Axis ID, and firmware
version. If no drives are detected, the software will display an error message, prompting you to double-check your
connections and configuration settings before trying again.

Figure 22.1.2. EasyMotion Studio II – Scan results

© Technosoft 2024 232 CANopen Programming

For drives connected within a CAN network, you can use the via CAN bus option to enable automatic detection of all
connected drives. However, this feature requires certain conditions to be met: all drives in the network must use

22.1.2 Choosing the drive, motor and feedback configuration

Once the drive has been successfully identified, key information such as its name, AxisID, and firmware version will be
displayed. At this point, you can select the desire motor technology. After finalizing the drive and motor technology
selection, simply click the green tick button in the Motor Selection group box to proceed. This action concludes the
selection wizard and transitions you to the project window, where you can continue with advanced configuration and
programming tasks.

Figure 22.1.3. EasyMotion Studio II – Drive and Motor selection

When you start a new project in EasyMotion Studio II, the software automatically creates an initial application as a
starting point.

Each application is organized into three main branches:

❑ Setup – Dedicated to configuring the drive and motor settings.

❑ Motion – Reserved for application development, accessible only in the full version of EasyMotion Studio II.

❑ Memory Settings – Provides an overview of memory usage and tools for configuring memory-related
parameters.

The Setup branch, essential for initializing the drive, motor and feedback, is presented in chapter Commissioning the
drive.

22.1.3 Downloading setup data to drive/motor

The configured setup can be transferred to the drive using the Write Setup to Drive option, accessible from the
Application menu or via the ribbon button highlighted with a red square in the image below.

Figure 22.1.4. EasyMotion Studio II - Write the setup parameters to the drive memory

© Technosoft 2024 233 CANopen Programming

Once the setup is successfully written to the drive's non-volatile memory (EEPROM), a reset is required to activate it.
The new settings will take effect at the next power-on, as the setup data is loaded into the active RAM memory used
during runtime.

22.2 Using TML Functions to Split Motion between Master and Drives

With Technosoft intelligent drives you can really distribute the intelligence between a CANopen master and the drives
in complex multi-axis applications. Instead of trying to command each step of an axis movement, you can program the
drives using TML to execute complex tasks and inform the master when these are done. Thus for each axis, the master
task may be reduced at: calling TML functions (with possibility to abort their execution) stored in the drives EEPROM
and waiting for a message, which confirms the finalization of the TML functions execution.

22.2.1 Build TML functions within EasyMotion Studio II

Steps to Create TML Functions with EasyMotion Studio II

1. Define the TML Functions
Start by opening your EasyMotion Studio II project. In the project tree, select the Functions entry. On the
right-hand side of the project panel, you can add the TML functions that the drive will execute. Additionally,
you can rename, remove, or rearrange the download order of these functions as needed.
Note: You can call up to 10 TML functions using the CANopen objects.

2. Add the TML Code
Once the functions are added, they will appear under the Functions entry in the project tree. Select each
function from the list and input the TML code that should be executed by it.

3. Download the TML Functions to the Drive Memory
Use the following commands to complete the process:

o Application | Motion | Build: Generates the executable code.

o Application | Motion | Download Program: Uploads the TML code to the drive memory.

Figure 22.2.1. EasyMotion Studio II project window – functions edit view

22.2.2 TML Function Objects

22.2.2.1 Object 2006h: Call TML Function

The object allows the execution of a previously downloaded TML function. When a write is performed to this object, the
TML function with the index specified in the value provided is called. The TML function body is defined using EasyMotion
Studio II and saved in the EEPROM memory of the drive. The function index represents an offset in a predefined table
of TML callable functions.

It is not possible to call another TML function, while the previous one is still running. Bit 8 of Statusword (Object 6041h:
Statusword) shows if a function is running. In case a function was called while another was still running, bits 7 (warning)
from the Statusword (Object 6041h: Statusword) and 14 (command error) from Motion Error Register (Object 2000h:
Motion Error Register) are set, and the function call is ignored. The execution of any called TML function can be aborted
by setting bit 13 in Controlword.

There are 10 TML functions that can be called through this mechanism (the first 10 TML functions defined using the
EasyMotion Studio II advanced programming environment). Any attempt to call another function (writing a number
different from 1...10 in this object) will be signaled with an SDO abort code 0609 0030h (Value range of parameter
exceeded). If a valid value is entered and no TML function is defined in that position, an SDO abort code will be issued:
0800 0020h (Data cannot be transferred or stored to the application).

The functions are initialized and available for calling, only after Controlword receives the Shutdown command (6040h =
06).

© Technosoft 2024 234 CANopen Programming

Object description:

Index 2006h

Name Call TML function

Object code VAR

Data type UNSIGNED16

Entry description:

Access WO

PDO mapping No

Units -

Value range 1...10

Default value -

22.3 Executing TML programs

The distributed control concept can go on step further. You may prepare and download into a drive a complete TML
program including functions, homing procedures, etc. The TML program execution can be started simply by writing a
value in the dedicated object.

22.3.1 Object 2077h: Execute TML program

This object is used to execute the TML program from either EEPROM or RAM memory. The TML program can be
downloaded via EasyMotion Studio II or by a CANopen master using the .sw file generated in EasyMotion Studio II.

Writing any value in this object (through the SDO protocol) will trigger the execution of the TML program in the drive. If
no TML program is found on the drive, an SDO abort code will be issued: 0800 0020h (Data cannot be transferred or
stored to the application).

If the TML program is downloaded in the EEPROM memory, the beginning address needs to be 4000h (for F515x
firmwares) or 2000h for (FA00x firmwares).

The TML program can be executed only after Controlword receives the Shutdown command (6040h = 06).

Object description:

Index 2077h

Name Execute TML program

Object code VAR

Data type UNSIGNED16

Entry description:

Access WO

PDO mapping No

Value range UNSIGNED16

Default value -

22.4 Loading Automatically Cam Tables Defined in EasyMotion Studio II

In addition to the CiA402 standard operation modes, Technosoft drives offer advanced functionalities such as
electronic gearing, electronic camming, and external modes with analog or digital references.

When using electronic camming, the cam tables (predefined motion profiles) can be loaded into the drive's active
memory in one of the following ways:

1. Master Download to RAM
After each power-on, the master system downloads the cam points directly into the drive's active RAM
memory.

2. Stored in EEPROM with Manual Copy to RAM
The cam points are stored in the drive’s EEPROM. Upon command from the master, these points are copied
into the active RAM memory.

3. Stored in EEPROM with Automatic Copy to RAM
The cam points are stored in the drive’s EEPROM. During the drive initialization (when transitioning to the
"Ready to Switch On" status), they are automatically copied from the EEPROM into the active RAM memory.

For the second and third methods, the cam tables are predefined in EasyMotion Studio II, where they are included in
the data stored in the drive’s EEPROM along with setup configurations, TML programs, and functions.
Note: The cam tables are also embedded in the .sw file generated by EasyMotion Studio. This allows the master to
verify the presence of cam tables in the drive’s EEPROM using the same procedure used to check for setup data.

© Technosoft 2024 235 CANopen Programming

22.4.1 CAM table structure

Cam tables are arrays of (X, Y) points where:

• X represents the cam input (master position), expressed in the master’s internal position units.
• Y represents the cam output (slave position), expressed in the slave’s internal position units.

Both X and Y points are 32-bit integers. The X points must be non-negative (including 0) and evenly spaced, with an
interpolation step of 2n (where n ranges from 0 to 7). This results in steps of 1, 2, 4, 8, 16, 32, 64, or 128. A single cam
table can contain up to 8192 points.
Since X points are evenly spaced, they can be fully defined using just two parameters:

1. Master start value (the first X point).
2. Interpolation step (distance between consecutive X points).

This optimization reduces the cam table size, which is stored in the drive/motor using the following format:
1. 1st word (16 bits):

o Bits 15–13: Power of 2 for the interpolation step. For example, if the binary value is 010 (2), the step
is 22=4, resulting in X points like 0, 4, 8, 12, etc.

o Bits 12–0: Length of the table minus 1 (length is the number of points, with each point occupying 2
words).

2. 2nd and 3rd words:
o Master start value (32 bits), expressed in master position units.
o The 2nd word stores the lower part, and the 3rd word stores the higher part.

3. 4th and 5th words: Reserved fields (must be set to 0).
4. Subsequent pairs of words:

o Slave Y positions (32 bits), expressed in position units.
o Each pair includes the lower part (1st word) and the higher part (2nd word).

5. Final word:
o Cam table checksum (sum of all table data modulo 65536, excluding the checksum itself).

22.5 Customizing the Homing Procedures

The homing methods defined by the CiA402 are highly modifiable to accommodate your application. If needed, any of
these homing modes can be customized. In order to do this you need to select the Homing Modes from your EasyMotion
Studio II application and in the right side to set as “User defined” one of the Homing procedures. Following this operation
the selected procedure will occur under Homing Modes in a sub tree, with the name HomeX where X is the number of
the selected homing.

If you click on the HomeX procedure, on the right side you’ll see the TML function implementing it. The homing routine
can be customized according to your application needs. Its calling name and method remain unchanged.

22.6 Customizing the Drive Reaction to Fault Conditions

Similarly to the homing modes, the default service routines for the TML interrupts can be customized according to your
application needs. However, as most of these routines handle the drive reaction to fault conditions, it is mandatory to
keep the existent functionality while adding your application needs, in order to preserve the correct protection level of
the drive. The procedure for modifying the TML interrupts is similar with that for the homing modes.

© Technosoft 2024 236 CANopen Programming

Appendix A: Object Dictionary by Index

Index
Sub-
index

Description

1000h 00h Device type

1001h 00h Error register

1002h 00h Manufacturer status register

1003h

 Predefined error field

00h Number of errors in history

01h Standard error field (history 1)

02h Standard error field (history 2)

03h Standard error field (history 3)

04h Standard error field (history 4)

05h Standard error field (history 5)

1005h 00h COB-ID of the SYNC message

1006h 00h Communication cycle period

1008h 00h Manufacturer device name

100Ah 00h Manufacturer software version

100Ch 00h Guard time

100Dh 00h Lifetime factor

1010h

 Store parameters

00h Number of entries

01h Save all parameters

1011h

 Restore default parameters

00h Number of entries

01h Restore all default parameters

1013h 00h High resolution time stamp

1014h 00h COB-ID Emergency object

1017h 00h Producer heartbeat time

1018h

 Identity Object

00h Number of entries

01h Vendor ID

02h Product Code

03h Revision Number

04h Serial Number

1200h

 Server SDO parameter

00h Number of entries

01h COB-ID Client -> Server (rx)

02h COB-ID Client -> Server (tx)

1400h

 Receive PDO1 communication parameters

00h Number of entries

01h COB-ID RPDO1

02h Transmission type

1401h

 Receive PDO2 communication parameters

00h Number of entries

01h COB-ID RPDO2

02h Transmission type

1402h

 Receive PDO3 communication parameters

00h Number of entries

01h COB-ID RPDO3

02h Transmission type

1403h

 Receive PDO4 communication parameters

00h Number of entries

01h COB-ID RPDO4

02h Transmission type

1600h

 RPDO1 mapping parameters

00h Number of entries

01h 1st mapped object – 6040h – Controlword

1601h

 RPDO2 mapping parameters

00h Number of entries

01h 1st mapped object – 6040h – Controlword

02h 2nd mapped object – 6060h – modes of operation

1602h

 RPDO3 mapping parameters

00h Number of entries

01h 1st mapped object – 6040h – Controlword

02h 2nd mapped object – 607Ah – target position

1603h RPDO4 mapping parameters

© Technosoft 2024 237 CANopen Programming

00h Number of entries

01h 1st mapped object – 6040h – Controlword

02h 2nd mapped object – 60FFh – target velocity

1800h

 TPDO1 communication parameters

00h Number of entries

01h COB-ID TPDO1

02h Transmission type

03h Inhibit Time

04h Reserved

05h Event timer

1801h

 TPDO2 communication parameters

00h Number of entries

01h COB-ID TPDO2

02h Transmission type

03h Inhibit Time

04h Reserved

05h Event timer

1802h

 TPDO3 communication parameters

00h Number of entries

01h COB-ID TPDO3

02h Transmission type

03h Inhibit Time

04h Reserved

05h Event timer

1803h

 TPDO4 communication parameters

00h Number of entries

01h COB-ID TPDO4

02h Transmission type

03h Inhibit Time

04h Reserved

05h Event timer

1A00h

 TPDO1 mapping parameters

00h Number of entries

01h 1st mapped object – 6041h – Statusword

1A01h

 TPDO2 mapping parameters

00h Number of entries

01h 1st mapped object – 6041h – Statusword

02h 2nd mapped object – 6061h – modes of operation display

1A02h

 TPDO3 mapping parameters

00h Number of entries

01h 1st mapped object – 6041h – Statusword

02h 2nd mapped object – 6064h – position actual value

1A03h

 TPDO4 mapping parameters

00h Number of entries

01h 1st mapped object – 606Bh – velocity demand value

02h 2nd mapped object – 606Ch – velocity actual value

2000h 00h Motion Error Register

2001h 00h Motion Error Register Mask

2002h 00h Detailed Error Register

2003h 00h Communication Error Register

2004h 00h COB-ID High resolution time stamp

2005h 00h Max slippage time out

2006h 00h Call TML function

2009h 00h Detailed Error Register 2

2010h 00h Master settings

2012h 00h Master resolution

2013h

 EGEAR multiplication factor

00h Number of entries

01h EGEAR ratio numerator (slave)

02h EGEAR ratio denominator (master)

2017h 00h Master actual position

2018h 00h Master actual speed

2019h 00h CAM table load address

201Ah 00h CAM table run address

201Bh 00h CAM offset

201Ch 00h External on-line reference

201Dh 00h External reference type

2022h 00h Control effort

© Technosoft 2024 238 CANopen Programming

2023h 00h Jerk time

2025h 00h Stepper current in open loop operation

2026h 00h Stand-by current for stepper in open loop operation

2027h 00h Timeout for stepper stand-by current

2045h 00h Digital outputs status

2046h 00h Analogue input: Reference

2047h 00h Analogue input: Feedback

2050h 00h Over current protection level

2051h 00h Over current time out

2052h 00h Motor nominal current

2053h 00h I2t protection integrator limit

2054h 00h I2t protection scaling factor

2055h 00h DC-link voltage

2058h 00h Drive temperature

2060h 00h Software version of the TML application

2064h 00h Read/Write configuration register

2065h 00h Write data at address set in object 2064h (16/32 bits)

2066h 00h Read data from address set in object 2064h (16/32 bits)

2067h 00h Write data at specified address

2069h 00h Checksum configuration register

206Ah 00h Checksum read register

206Bh 00h CAM input scaling factor

206Ch 00h CAM output scaling factor

206Fh 00h Time notation index

2070h 00h Time dimension index

2071h

 Time factor

00h Number of entries

01h Numerator

02h Divisor

2072h 00h Interpolated position mode status

2073h 00h Interpolated position buffer length

2074h 00h Interpolated position buffer configuration

2075h

 Position triggers

00h Number of entries

01h Position trigger 1

02h Position trigger 2

03h Position trigger 3

04h Position trigger 4

2076h 00h Save current configuration

2077h 00h Execute TML program

2079h 00h Interpolated position initial position

207Ah 00h Interpolated position 1st order time

207Bh 00h Homing current threshold

207Ch 00h Homing current threshold time

207Dh 00h Dummy

207Eh 00h Current actual value

207Fh 00h Current limit

2081h 00h Set/Change the actual motor position value

2083h 00h Encoder resolution for step loss protection

2084h 00h Stepper resolution for step loss protection

2085h 00h Position triggered outputs

2086h 00h Limit speed for CSP

2087h 00h Actual internal velocity from sensor on motor

2088h 00h Actual internal position from sensor on motor

208Bh 00h Sin AD signal from Sin/Cos encoder

208Ch 00h Cos AD signal from Sin/Cos encoder

208Dh 00h Auxiliary encoder position

208Eh 00h Auxiliary Settings Register

208Fh

 Digital inputs 8bit

00h Number of entries

01h Device profile defined inputs

02h Manufacturer specific inputs

2090h

 Digital outputs 8bit

00h Number of entries

01h Physical outputs 8bit

02h Bit mask 8bit

2091h 00h Lock EEPROM

2092h User Variables

© Technosoft 2024 239 CANopen Programming

 00h Number of entries

 01h UserVar1

 02h UserVar2

 03h UserVar3

 04h UserVar4

20A0h

 Load Position and Speed monitoring

00h Number of entries

01h Reserved

02h Load Position Monitor

03h Load Speed Monitor

2100h 00h Number of steps per revolution

2101h 00h Number of microsteps per step

2102h 00h Brake status

2103h 00h Number of encoder counts per revolution

2104h 00h Auxiliary encoder function

2105h 00h Auxiliary encoder status

2106h 00h Auxiliary encoder captured position positive edge

2107h 00h Auxiliary encoder captured position negative edge

2108h

 Filter variable 16bit

00h Number of entries

01h 16 bit variable address

02h Filter strength

03h Filtered variable 16bit

210Bh 00h Auxiliary Settings Register2

210Fh

 Acceleration encoder factor

00h Number of entries

01h Acceleration internal units (IU)

02h Acceleration units (AU)

2110h

 Jerk encoder factor

00h Number of entries

01h Jerk internal units (IU)

02h Jerk units (JU)

2113h

 Detailed Option Code

00h Number of entries

01h Short-Circuit option code

02h Reserved

03h Control error option code

04h Communication error option code

05h Reserved

06h Reserved

07h Reserved

08h Over current option code

09h Reserved

10h Over temperature – Motor option code

11h Over temperature – Drive option code

12h Over voltage option code

13h Under voltage option code

14h Reserved

15h Enable / STO inactive option code

2114h 00h Fault Override Option Code

2115h 00h ASR4

6007h 00h Abort connection option code

603Fh 00h Error code

6040h 00h Controlword

6041h 00h Statusword

605Ah 00h Quick stop option code

605Bh 00h Shutdown option code

605Ch 00h Shutdown option code

605Dh 00h Disable operation option code

605Eh 00h Fault reaction option code

6060h 00h Modes of operation

6061h 00h Modes of operation display

6062h 00h Position demand value

6063h 00h Position actual internal value

6064h 00h Position actual value

6065h 00h Following error window

6066h 00h Following error time out

6067h 00h Position window

© Technosoft 2024 240 CANopen Programming

6068h 00h Position window time

6069h 00h Velocity sensor actual value

606Bh 00h Velocity demand value

606Ch 00h Velocity actual value

606Dh 00h Velocity window

606Eh 00h Velocity window time

606Fh 00h Velocity threshold

6071h 00h Target torque

6075h 00h Motor rate current

6077h 00h Torque actual value

607Ah 00h Target position

607Bh

 Position range limit

00h Number of entries

01h Min position range limit

02h Max position range limit

607Ch 00h Home offset

607Dh

 Software position limit

00h Number of entries

01h Minimum position range limit

02h Maximum position range limit

607Eh 00h Polarity

6080h 00h Max motor speed

6081h 00h Profile velocity

6083h 00h Profile acceleration

6085h 00h Quick stop deceleration

6086h 00h Motion profile type

6087h 00h Torque slope

6089h 00h Position notation index

608Ah 00h Position dimension index

608Bh 00h Velocity notation index

608Ch 00h Velocity dimension index

608Dh 00h Acceleration notation index

608Eh 00h Acceleration dimension index

6091h

 Gear Ratio

00h Number of entries

01h Motor rotation

02h Load rotation

6092h

 Feed constant

00h Number of entries

01h Feed

02h Shaft rotation

6093h

 Position factor

00h Number of entries

 Factor group – CiA 402 Factor group – CiA 402-2

01h Numerator Position internal units (IU)

02h Divisor Position units (PU)

6094h

 Velocity encoder factor

00h Number of entries

 Factor group – CiA 402 Factor group – CiA 402-2

01h Numerator Velocity internal units (IU)

02h Divisor Velocity units (VU)

6096h

 Velocity factor

00h Number of entries

01h Velocity units (VU)

02h Position units (PU)

6097h

 Acceleration factor

00h Number of entries

 Factor group – CiA 402 Factor group – CiA 402-2

01h Numerator Acceleration units (AU)

02h Divisor Velocity units (VU)

6098h 00h Homing method

6099h

 Homing speeds

00h Number of entries

01h Speed during search for switch

02h Speed during search for zero

609Ah 00h Homing acceleration

60A2h
 Jerk factor

00h Number of entries

© Technosoft 2024 241 CANopen Programming

01h Jerk Units (JU)

02h Acceleration units (AU)

60A8h 00h SI unit position

60A9h 00h SI unit velocity

60AAh 00h SI unit acceleration

60ABh 00h SI unit jerk

60B8h 00h Touch probe function

60B9h 00h Touch probe status

60BAh 00h Touch probe 1 positive edge

60BBh 00h Touch probe 1 negative edge

60BCh 00h Touch probe 2 positive edge

60BDh 00h Touch probe 2 negative edge

60C0h 00h Interpolation sub mode select

60C1h

 Interpolation Data Record

00h Number of entries

01h The first parameter

02h The second parameter

60C2h

 Interpolation Time Period

00h Number of entries

01h Interpolation time period value

02h Interpolation time index

60F2h 00h Positioning Option Code

60F4h 00h Following error actual value

60F8h 00h Max slippage

60FCh 00h Position demand internal value

60FDh 00h Digital inputs

60FEh Digital outputs

00h Number of entries

01h Physical outputs

02h Bit mask

60FFh 00h Target velocity

© Technosoft 2024 242 CANopen Programming

Appendix B: Definition of Dimension Indices

Dimension/Notation Index Table
physical

dimension
dimension

index
units
exponent unit type

notation
index

non 0 units 0

length 1 metre 0

milli metre -3

kilo metre 3

micro metre -6

area 2 square metre 0

square
milli

metre -6

square
kilo

metre 6

volume 3 cubic metre 0

time 4 second 0

 minute 70

 hour 74

 day 77

milli second -3

micro second -6

actual power 9 watt 0

kilo watt 3

mega watt 6

milli watt -3

apparent
power

10 voltampere 0

kilo voltampere 3

mega voltampere 6

no. of
revolutions

11 per second 0

 per minute 73

 per hour 74

angle 12 radian 0

 second 75

 minute 76

 degree 77

 newdegree 78

velocity 13 metre p. second 0

milli metre p. second -3

milli metre p. minute 79

 metre p. minute 80

kilo metre p. minute 81

milli metre p. hour 82

 metre p. hour 83

kilo metre p. hour 84

torque 16 newton metre 0

kilo newton metre 3

mega newton metre 6

temperature 17 kelvin 0

 centigrade 94

 Fahrenheit 95

voltage 21 Volt 0

kilo Volt 3

milli Volt -3

micro Volt -6

current 22 Ampere 0

kilo Ampere 3

milli Ampere -3

micro Ampere -6

ratio 24 percent 0

frequency 28 Hertz 0

kilo Hertz 3

mega Hertz 6

giga Hertz 9

steps 32 steps 0

© Technosoft 2024 243 CANopen Programming

encoder
resolution

33 revolution steps per 0

Examples for Notation Indices

Examples for notation indices < 64:

For notation index <64 the value is used as an exponent. The unit is defined by the physical dimension and calculated
by unit type and exponent, all declared in the dimension/notation index table above.

position unit dimension index = 1: length
notation index = -6: micro meter

position_units = 10notation_index x f(dimension_index) = 10-6 m

dimension index = 12: angle notation index
 = 0: radian

position_units = 10notation_index x f(dimension_index) = radian

velocity unit

dimension index = 13: velocity notation index = -3: milli metre
per second

velocity_units = 10notation_index x f(dimension_index) = 10-3 m/s

frequency units dimension index = 28:
frequency notation index = 3: kilo hertz

frequency_units = 10notation_index x f(dimension_index) = 103 Hz

Examples for notation indices > 64:

The unit is defined by the physical dimension and unit type, both declared in the dimension/notation index table.

time units

dimension index = 4: time notation index = 77: day

time_units = f(dimension_index,notation_index) = day

position unit dimension index = 12:
 angle notation index = 76:
 minute

position_units = f(dimension_index,notation_index)

= minute

	Table of contents
	Read This First
	About This Manual
	Scope of This Manual
	Notational Conventions
	Related Documentation
	If you Need Assistance …

	1 Getting Started
	1.1 Setting up the drive using EasyMotion Studio II
	1.1.1 What is EasyMotion Studio II?
	1.1.2 Installing EasyMotion Studio II
	1.1.3 Establishing communication with the drive
	1.1.3.1 Connecting via RS-232

	1.1.4 Choosing the drive and motor configuration
	1.1.5 Commissioning the drive
	1.1.6 Downloading setup data to drive/motor
	1.1.7 Creating a .sw file with the setup data
	1.1.8 Checking and updating setup data via .sw files with a CANopen master
	1.1.9 Testing and monitoring the drive behavior
	1.1.10 TechnoCAN Extension

	1.2 Changing the drive Axis ID (Node ID)
	1.2.1 Axis ID Initialization on Power-On
	1.2.2 Determining an Unknown Axis ID

	1.3 Setting the current limit
	1.4 Setting the CAN baud rate
	1.5 CANopen factor group setting
	1.5.1 Factor group setting - CiA-402 (obsolete)
	1.5.2 Factor group setting - CiA-402-2

	1.6 Using the built-in Motion Controller and TML
	1.6.1 Technosoft Motion Language Overview

	2 Layer Setting Services (LSS protocol)2F
	2.1 Overview
	2.2 Configuration services
	2.2.1 Switch State Global
	2.2.2 Switch State Selective
	2.2.3 Configure Node ID
	2.2.4 Configure Bit Timing Parameters
	2.2.5 Activate Bit Timing Parameters
	2.2.6 Store Configuration Protocol
	2.2.7 Inquire Identity Vendor ID
	2.2.8 Inquire Identity Product Code
	2.2.9 Inquire Identity Revision Number
	2.2.10 Inquire Identity Serial Number
	2.2.11 Inquire Identity Node ID
	2.2.12 Identify Remote Slave
	2.2.13 Identify non-configured Remote Slave

	3 CAN and the CANopen protocol
	3.1 CAN Architecture
	3.2 Accessing CANopen devices
	3.2.1 Object dictionary
	3.2.2 Object access using index and sub-index
	3.2.3 Service Data Objects (SDO)
	3.2.4 Process Data Objects (PDO)

	3.3 Objects that define SDOs and PDOs
	3.3.1 Object 1200h: Server SDO Parameter
	3.3.2 Object 1400h: Receive PDO1 Communication Parameters
	3.3.3 Object 1401h: Receive PDO2 Communication parameters
	3.3.4 Object 1402h: Receive PDO3 Communication parameters
	3.3.5 Object 1403h: Receive PDO4 Communication parameters
	3.3.6 Object 1600h: Receive PDO1 Mapping Parameters
	3.3.7 Object 1601h: Receive PDO2 Mapping Parameters
	3.3.8 Object 1602h: Receive PDO3 Mapping Parameters
	3.3.9 Object 1603h: Receive PDO4 Mapping Parameters
	3.3.10 Object 1800h: Transmit PDO1 Communication parameters
	3.3.11 Object 1801h: Transmit PDO2 Communication parameters
	3.3.12 Object 1802h: Transmit PDO3 Communication parameters
	3.3.13 Object 1803h: Transmit PDO4 Communication parameters
	3.3.14 Object 1A00h: Transmit PDO1 Mapping Parameters
	3.3.15 Object 1A01h: Transmit PDO2 Mapping Parameters
	3.3.16 Object 1A02h: Transmit PDO3 Mapping Parameters
	3.3.17 Object 1A03h: Transmit PDO4 Mapping Parameters
	3.3.18 Object 207Dh: Dummy

	3.4 Dynamic mapping of the PDOs
	3.5 RxPDOs mapping example
	3.6 TxPDOs mapping example

	4 Network Management
	4.1 Overview
	4.1.1 Network Management (NMT) State Machine
	4.1.2 Device control
	4.1.2.1 Enter Pre-Operational
	4.1.2.2 Reset communication
	4.1.2.3 Reset Node
	4.1.2.4 Start Remote Node
	4.1.2.5 Stop Remote Node

	4.1.3 Device monitoring
	4.1.3.1 Node guarding protocol
	4.1.3.2 Heartbeat protocol
	4.1.3.3 Boot-up protocol
	4.1.3.4 Synchronization between devices

	4.1.4 Emergency messages
	4.1.4.1 Emergency message structures

	4.2 Network management objects
	4.2.1 Object 1001h: Error Register
	4.2.2 Object 1003h: Pre-defined error field
	4.2.3 Object 1005h: COB-ID of the SYNC Message
	4.2.4 Object 1006h: Communication Cycle Period
	4.2.5 Object 1010h: Store parameters
	4.2.6 Object 1011h: Restore parameters
	4.2.7 Object 100Ch: Guard Time
	4.2.8 Object 100Dh: Life Time Factor
	4.2.9 Object 1013h: High Resolution Time Stamp
	4.2.10 Object 2004h: COB-ID of the High-resolution time stamp
	4.2.11 Configure the drive as a SYNC master Example
	4.2.12 Object 1014h: COB-ID Emergency Object
	4.2.13 Object 1017h: Producer Heartbeat Time
	4.2.14 Object 2089h: Synchronization test config

	5 Drive control and status
	5.1 CiA402 State machine and command coding
	5.2 Drive control and status objects
	5.2.1 Object 6040h: Controlword
	5.2.2 Object 6041h: Statusword
	5.2.3 Object 1002h: Manufacturer Status Register
	5.2.4 Object 6060h: Modes of Operation
	5.2.5 Object 6061h: Modes of Operation Display

	5.3 Limit Switch functionality explained
	5.3.1 Hardware limit switches LSP and LSN functionality
	5.3.2 Software limit switches functionality

	5.4 Error monitoring
	5.4.1 Object 2000h: Motion Error Register
	5.4.2 Object 2001h: Motion Error Register Mask
	5.4.3 Object 2002h: Detailed Error Register (DER)
	5.4.4 Object 2009h: Detailed Error Register 2 (DER2)4F
	5.4.5 Object 2003h: Communication Error Register (CER)
	5.4.6 Object 603Fh: Error code
	5.4.7 Object 605Ah: Quick stop option code
	5.4.8 Object 605Bh: Shutdown option code
	5.4.9 Object 605Ch: Disable operation option code
	5.4.10 Object 605Dh: Halt option code
	5.4.11 Object 605Eh: Fault reaction option code
	5.4.12 Object 6007h: Abort connection option code
	5.4.13 Object 2114h: Fault Override Option Code
	5.4.14 Object 2113h: Detailed Option Code

	5.5 Digital I/O control and status objects
	5.5.1 Object 60FDh: Digital inputs
	5.5.2 Object 208Fh: Digital inputs 8bit
	5.5.3 Object 60FEh: Digital outputs
	5.5.3.1 Example for setting the digital outputs

	5.5.4 Object 2090h: Digital outputs 8bit
	5.5.5 Object 2045h: Digital outputs status
	5.5.6 Object 2102h: Brake status
	5.5.7 Object 2046h: Analogue input: Reference
	5.5.8 Object 2047h: Analogue input: Feedback
	5.5.9 Object 2055h: DC-link voltage
	5.5.10 Object 2058h: Drive Temperature
	5.5.11 Object 2108h: Filter variable 16bit
	5.5.11.1 How object 2108h works:

	5.6 Protections Setting Objects
	5.6.1 Object 607Dh: Software position limit5F
	5.6.2 Object 2050h: Over-current protection level
	5.6.3 Object 2051h: Over-current time out
	5.6.4 Object 2052h: Motor nominal current
	5.6.5 Object 2053h: I2t protection integrator limit
	5.6.6 Object 2054h: I2t protection scaling factor
	5.6.7 Object 207Fh: Current limit

	5.7 Step Loss Detection for Stepper Open Loop configuration
	5.7.1 Object 2083h: Encoder Resolution for step loss protection
	5.7.2 Object 2084h: Stepper Resolution for step loss protection
	5.7.3 Enabling step loss detection protection
	5.7.4 Step loss protection setup
	5.7.5 Recovering from step loss detection fault
	5.7.6 Remarks about Factor Group settings when using step the loss detection

	5.8 Drive info objects
	5.8.1 Object 1000h: Device Type
	5.8.2 Object 6502h: Supported drive modes
	5.8.3 Object 1008h: Manufacturer Device Name
	5.8.4 Object 100Ah: Manufacturer Software Version
	5.8.5 Object 2060h: Software version of a TML application
	5.8.6 Object 1018h: Identity Object

	5.9 Miscellaneous Objects
	5.9.1 Object 2025h: Stepper current in open-loop operation
	5.9.2 Object 2026h: Stand-by current for stepper in open-loop operation
	5.9.3 Object 2027h: Timeout for stepper stand-by current
	5.9.4 Object 2075h: Position triggers
	5.9.5 Object 2085h: Position triggered outputs
	5.9.6 Object 2076h: Save current configuration
	5.9.7 Object 208Bh7F : Sin AD signal from Sin/Cos encoder
	5.9.8 Object 208Ch8F : Cos AD signal from Sin/Cos encoder
	5.9.9 Object 208Eh: Auxiliary Settings Register
	5.9.10 Object 210Bh: Auxiliary Settings Register2
	5.9.11 Object 20A0h: Load Position and Speed monitoring10F
	5.9.12 Object 2100h: Number of steps per revolution
	5.9.13 Object 2101h: Number of microsteps per step
	5.9.14 Object 2103h: Number of encoder counts per revolution
	5.9.15 Object 2091h11F : Lock EEPROM
	5.9.16 Object 2092h: User Variables12F

	6 Factor group
	6.1 Factor group objects - CiA-402 (obsolete)
	6.1.1 Object 607Eh: Polarity
	6.1.2 Object 6089h: Position notation index
	6.1.3 Object 608Ah: Position dimension index
	6.1.4 Object 608Bh: Velocity notation index
	6.1.5 Object 608Ch: Velocity dimension index
	6.1.6 Object 608Dh: Acceleration notation index
	6.1.7 Object 608Eh: Acceleration dimension index
	6.1.8 Object 206Fh: Time notation index
	6.1.9 Object 2070h: Time dimension index
	6.1.10 Object 6093h: Position factor
	6.1.10.1 Setting the numerator and divisor in a factor group object. Example

	6.1.11 Object 6094h: Velocity encoder factor
	6.1.12 Object 6097h: Acceleration factor
	6.1.13 Object 2071h: Time factor

	6.2 Factor group objects - CiA-402-2
	6.2.1 Object 60A8h: SI unit position
	6.2.2 Object 6093h: Position Factor / Position Scaling
	6.2.3 Object 608Fh: Position Encoder Resolution
	6.2.4 Object 6091h: Gear Ratio
	6.2.5 Object 6092h: Feed Constant
	6.2.6 Object 60A9h: SI unit velocity
	6.2.7 Object 6094h: Velocity encoder factor
	6.2.8 Object 6096h: Velocity Factor
	6.2.9 Object 60AAh: SI unit acceleration
	6.2.10 Object 210Fh: Acceleration encoder factor
	6.2.11 Object 6097h: Acceleration Factor
	6.2.12 Object 60ABh: SI unit jerk
	6.2.13 Object 2110h: Jerk encoder factor
	6.2.14 Object 60A2h: Jerk Factor

	7 Homing Mode
	7.1 Overview
	7.2 Homing methods
	7.2.1 Method 1: Homing on the Negative Limit Switch and Index Pulse
	7.2.2 Method 2: Homing on the Positive Limit Switch and Index Pulse
	7.2.3 Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse.
	7.2.4 Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse.
	7.2.5 Methods 7 to14: Homing on the Home Switch using limit switches and Index Pulse.
	7.2.6 Methods 17 to 30: Homing without an Index Pulse
	7.2.7 Method 17: Homing on the Negative Limit Switch
	7.2.8 Method 18: Homing on the Positive Limit Switch
	7.2.9 Methods 19 and 20: Homing on the Positive Home Switch
	7.2.10 Methods 21 and 22: Homing on the Negative Home Switch
	7.2.11 Methods 23 to30: Homing on the Home Switch using limit switches
	7.2.12 Methods 33 and 34: Homing on the Index Pulse
	7.2.13 Method 35: Homing on the Current Position
	7.2.14 Method -1: Homing on the Negative Mechanical Limit and Index Pulse
	7.2.14.1 Method -1 based on motor current increase
	7.2.14.2 Method -1 based on step loss detection

	7.2.15 Method -2: Homing on the Positive Mechanical Limit and Index Pulse
	7.2.15.1 Method -2 based on motor current increase
	7.2.15.2 Method -2 based on step loss detection

	7.2.16 Method -3: Homing on the Negative Mechanical Limit without an Index Pulse.
	7.2.16.1 Method -3 based on motor current increase
	7.2.16.2 Method -3 based on step loss detection

	7.2.17 Method -4: Homing on the Positive Mechanical Limit without an Index Pulse.
	7.2.17.1 Method -4 based on motor current increase
	7.2.17.2 Method -4 based on step loss detection

	7.3 Homing Mode Objects
	7.3.1 Controlword in homing mode
	7.3.2 Statusword in homing mode
	7.3.3 Object 607Ch: Home offset
	7.3.4 Object 6098h: Homing method
	7.3.5 Object 6099h: Homing speeds
	7.3.6 Object 609Ah: Homing acceleration
	7.3.7 Object 207Bh: Homing current threshold
	7.3.8 Object 207Ch: Homing current threshold time

	7.4 Homing example

	8 Position Profile Mode
	8.1 Overview
	8.1.1 Discrete motion profile (change set immediately = 0)
	8.1.2 Continuous motion profile (change set immediately = 1)
	8.1.3 Controlword in profile position mode
	8.1.4 Statusword in profile position mode

	8.2 Position Profile Mode Objects
	8.2.1 Object 607Ah: Target position
	8.2.2 Object 6081h: Profile velocity
	8.2.3 Object 6083h: Profile acceleration
	8.2.4 Object 6085h: Quick stop deceleration
	8.2.5 Object 2023h: Jerk time
	8.2.6 Object 6086h: Motion profile type
	8.2.7 Object 6062h: Position demand value
	8.2.8 Object 6063h: Position actual internal value
	8.2.9 Object 6064h: Position actual value
	8.2.10 Object 6065h: Following error window
	8.2.11 Object 6066h: Following error time out
	8.2.12 Object 6067h: Position window
	8.2.13 Object 6068h: Position window time
	8.2.14 Object 607Bh: Position range limit14F
	8.2.15 Object 60F2h: Positioning option code15F
	8.2.16 Object 60F4h: Following error actual value
	8.2.17 Object 60FCh: Position demand internal value
	8.2.18 Object 2022h: Control effort
	8.2.19 Object 2081h: Set/Change the actual motor position
	8.2.20 Object 2088h16F : Actual internal position from sensor on motor
	8.2.21 Object 208Dh17F : Auxiliary encoder position

	8.3 Position Profile Examples
	8.3.1 Relative trapezoidal example
	8.3.2 Absolute trapezoidal example
	8.3.3 Relative Jerk-limited ramp profile example
	8.3.4 Absolute Jerk-limited ramp profile example

	9 Torque Profile Mode
	9.1 Overview
	9.1.1 Controlword in profile torque mode
	9.1.2 Statusword in profile torque mode

	9.2 Torque Profile Mode Objects
	9.2.1 Object 6071h: Target torque
	9.2.2 Object 6075h: Motor rated current
	9.2.3 Object 6087h: Torque slope

	9.3 Torque Profile Example

	10 Interpolated Position Mode
	10.1 Overview
	10.1.1 Internal States
	10.1.2 Controlword in interpolated position mode
	10.1.3 Statusword in interpolated position mode

	10.2 Interpolated Position Objects
	10.2.1 Object 60C0h: Interpolation sub mode select
	10.2.2 Object 60C1h: Interpolation data record
	10.2.2.1 a) For linear interpolation (standard DS402 implementation)
	10.2.2.2 b) For PT (Position –Time) linear interpolation (legacy).
	10.2.2.3 c) For PVT (Position – Velocity – Time) cubic interpolation

	10.2.3 Object 2072h: Interpolated position mode status
	10.2.4 Object 2073h: Interpolated position buffer length
	10.2.5 Object 2074h: Interpolated position buffer configuration
	10.2.6 Object 2079h: Interpolated position initial position
	10.2.7 Object 207Ah: Interpolated position 1st order time
	10.2.8 Loading the interpolated points

	10.3 Linear interpolation example
	10.4 PT absolute movement example
	10.5 PVT absolute movement example
	10.6 PVT relative movement example

	11 Cyclic Synchronous Position mode (CSP)
	11.1 Overview
	11.1.1 Controlword in Cyclic Synchronous Position mode (CSP)
	11.1.2 Statusword in Cyclic Synchronous Position mode (CSP)

	11.2 Cyclic Synchronous Position Mode Objects
	11.2.1 Object 60C2h: Interpolation time period
	11.2.2 Object 2086h: Limit speed for CSP19F

	11.3 Cyclic Synchronous Position Mode example
	11.4 Configuring Technosoft CANopen Drives for NC-PTP (CSP) operation in TwinCAT 3
	11.4.1 Create a new project and scan for the drives
	11.4.2 Setting the Sync-TxPDO Delay
	11.4.3 Adding new Nc-PTP axes
	11.4.4 NC-PTP Axis settings
	11.4.5 Setting the CAN communication cycle time
	11.4.6 Configuring the TwinCAT PDO layout
	11.4.6.1 Setting the PDOs as synchronous

	11.4.7 Adding start-up SDO drive configuration messages
	11.4.7.1 Mapping objects to RxPDO1
	11.4.7.2 Mapping objects to TxPDO1
	11.4.7.3 Setting Modes of Operation to CSP mode
	11.4.7.4 Setting the interpolation object
	11.4.7.5 Setting object 1006h to 0; Synchronization issue workaround

	11.4.8 Linking drive PDO data variables to internal NC-PTP variables
	11.4.8.1 Linking standard NC-PTP variables
	11.4.8.2 Linking the home input IN0 to the HomingSensor of the NC-PTP interface

	11.4.9 Enabling and testing the NC-PTP interface in TwinCAT
	11.4.10 Setting Controlword bit 14 to 1 (Optional)

	12 Cyclic synchronous velocity mode (CSV)
	12.1 Overview
	12.1.1 Controlword in cyclic synchronous velocity mode
	12.1.2 Statusword in cyclic synchronous velocity mode

	12.2 Cyclic Synchronous Velocity Mode basic example

	13 Cyclic synchronous torque mode (CST)
	13.1 Overview
	13.1.1 Controlword in cyclic synchronous torque mode
	13.1.2 Statusword in cyclic synchronous torque mode

	13.2 Cyclic synchronous torque mode objects
	13.2.1 Object 6071h: Target torque
	13.2.2 Object 6077h: Torque actual value
	13.2.3 Object 6080h: Max motor speed
	13.2.4 Object 2115h: ASR4

	13.3 Cyclic Synchronous Torque Mode basic example

	14 Velocity Profile Mode
	14.1 Overview
	14.1.1 Controlword in Profile Velocity mode
	14.1.2 Statusword in Profile Velocity mode

	14.2 Velocity Mode Objects
	14.2.1 Object 6069h: Velocity sensor actual value
	14.2.2 Object 606Bh: Velocity demand value
	14.2.3 Object 606Ch: Velocity actual value
	14.2.4 Object 606Dh: Velocity window
	14.2.5 Object 606Eh: Velocity window time
	14.2.6 Object 606Fh: Velocity threshold
	14.2.7 Object 60FFh: Target velocity
	14.2.8 Object 60F8h: Max slippage
	14.2.9 Object 2005h: Max slippage time out
	14.2.10 Object 2087h20F : Actual internal velocity from sensor on motor

	14.3 Speed profile example
	14.4 Speed profile example for stepper open loop

	15 Electronic Gearing Position (EGEAR) Mode
	15.1 Overview
	15.1.1 Controlword in electronic gearing position mode (slave axis)
	15.1.2 Statusword in electronic gearing position mode

	15.2 Gearing Position Mode Objects
	15.2.1 Object 201E h: Master position
	15.2.2 Object 2010h: Master settings
	15.2.3 Object 2012h: Master resolution
	15.2.4 Object 2013h: EGEAR multiplication factor
	15.2.5 Object 2017h: Master actual position
	15.2.6 Object 2018h: Master actual speed
	15.2.7 Object 201Dh: External Reference Type

	15.3 Electronic gearing through CAN example

	16 Electronic Camming Position (ECAM) Mode
	16.1 Overview
	16.1.1 Controlword in electronic camming position mode
	16.1.2 Statusword in electronic camming position mode

	16.2 Electronic Camming Position Mode Objects
	16.2.1 Object 2019h: CAM table load address
	16.2.2 Object 201Ah: CAM table run address
	16.2.3 Object 201Bh: CAM offset
	16.2.4 Object 206Bh: CAM: input scaling factor
	16.2.5 Object 206Ch: CAM: output scaling factor
	16.2.6 Building a CAM profile and saving it as an .sw file example
	16.2.6.1 Extracting the cam data from the motion and setup .sw file
	16.2.6.2 Downloading a CAM .sw file with objects 2064h and 2065h example

	16.3 Electronic camming through CAN example

	17 External Reference Position Mode
	17.1 Overview
	17.1.1 Controlword in external reference position mode
	17.1.2 Statusword in external reference position mode

	17.2 External Reference Position Mode Objects
	17.2.1 Object 201Ch: External On-line Reference

	17.3 External reference position profile example

	18 External Reference Speed Mode
	18.1 Overview
	18.1.1 Controlword in external reference speed mode
	18.1.2 Statusword in external reference speed mode

	18.2 External reference speed mode objects
	18.2.1 Object 201Ch: External On-line Speed Reference

	18.3 External reference speed profile example

	19 External Reference Torque Mode
	19.1 Overview
	19.1.1 Controlword in external reference torque mode
	19.1.2 Statusword in external reference torque mode

	19.2 External reference torque mode objects
	19.2.1 Object 201Ch: External On-line Torque Reference
	19.2.2 Object 6077h: Torque actual value
	19.2.3 Object 207Eh: Current actual value

	19.3 External reference torque profile example

	20 Touch probe functionality
	20.1 Overview
	20.2 Touch probe objects
	20.2.1 Object 60B8h: Touch probe function
	20.2.2 Object 60B9h: Touch probe status
	20.2.3 Object 60BAh: Touch probe 1 positive edge
	20.2.4 Object 60BBh: Touch probe 1 negative edge
	20.2.5 Object 60BCh: Touch probe 2 positive edge
	20.2.6 Object 60BDh: Touch probe 2 negative edge
	20.2.7 Object 2104h24F : Auxiliary encoder function
	20.2.8 Object 2105h25F : Auxiliary encoder status
	20.2.9 Object 2106h26F : Auxiliary encoder captured position positive edge
	20.2.10 Object 2107h27F : Auxiliary encoder captured position negative edge

	20.3 Touch probe example

	21 Data Exchange between CANopen master and drives
	21.1 Checking Setup Data Consistency
	21.2 Image Files Format and Creation
	21.3 Data Exchange Objects
	21.3.1 Object 2064h: Read/Write Configuration Register
	21.3.2 Object 2065h: Write 16/32 bits data at address set in Read/Write Configuration Register
	21.3.3 Object 2066h: Read 16/32 bits data from address set in Read/Write Configuration Register
	21.3.4 Object 2067h: Write data at specified address
	21.3.4.1 Writing 16 bit data to a specific address using object 2067h example

	21.3.5 Object 2069h: Checksum configuration register
	21.3.6 Object 206Ah: Checksum read register

	21.4 Downloading an image file (.sw) to the drive using CANopen objects example
	21.5 Downloading an image file (.sw) to the drive using CANopen objects C# example code
	21.5.1 The main script code
	21.5.2 The function Write_SWfile code

	21.6 Checking and loading the drive setup via SW file using CANopen commands example.
	21.7 SW file Checksum calculation C# example code
	21.7.1 The checksum calculation code

	22 Advanced features
	22.1 Using EasyMotion Studio II
	22.1.1 Starting a new project
	22.1.2 Choosing the drive, motor and feedback configuration
	22.1.3 Downloading setup data to drive/motor

	22.2 Using TML Functions to Split Motion between Master and Drives
	22.2.1 Build TML functions within EasyMotion Studio II
	Steps to Create TML Functions with EasyMotion Studio II
	22.2.2 TML Function Objects
	22.2.2.1 Object 2006h: Call TML Function

	22.3 Executing TML programs
	22.3.1 Object 2077h: Execute TML program

	22.4 Loading Automatically Cam Tables Defined in EasyMotion Studio II
	22.4.1 CAM table structure

	22.5 Customizing the Homing Procedures
	22.6 Customizing the Drive Reaction to Fault Conditions

	Appendix A: Object Dictionary by Index
	Appendix B: Definition of Dimension Indices
	Dimension/Notation Index Table
	Examples for Notation Indices

