

OEM Automatic Ltd

Address: Whiteacres, Whetstone Leicester, LE8 6ZG 0116 284 9900 | Orders@oem.co.uk | www.oem.co.uk

APLISENS - PEM-1000 SERIES FLOW METER

Electromagnetic (Magflow)

PEMDN0050PN16.1

- 0,085..28,274,3 m3/h
- 3/8" up to 40" pipe size
- 1,6 MPa
- · Acids, alkalis, paints, pastes, water etc
- 4-20mA or Pulse/frequency

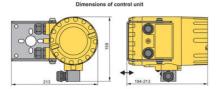
PRODUCT DESCRIPTION

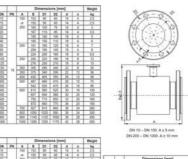
The Aplisens PEM-1000 'Mag flow meter' is a very robust flowmeter for a wide range of applications at a competitive price.

The magnetic flowmeter is for bidirectional measurement of liquids with a minimum conductivity 5µS/cm such as acid/alkalis, paints, pastes and water/wastewater.

The PEM-1000 is available in two versions, one with a direct mounted display/sensor and the other with a separate display/sensor. The pipe size starts at 3/8" (DN10) which gives 1m3/h all the way up to 40" (DN1000) which offers 8000m3/h with a total of twenty one different pipe size/m3/h options inbetween. There is a choice of lining from soft or hard rubber to teflon and a choice of elctrode materials which are 316Ti, Platinium Hastelloy, Tantalum and Titanium. Application examples:

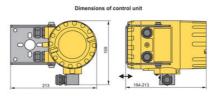
• Utility, water and wastewater processing

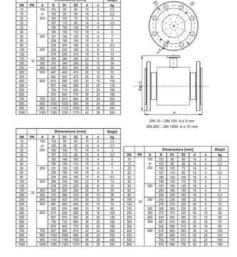

Please refer to the datasheet further down the page under Downloads.


TECHNICAL DATA

Classification accuracy	± 0.5% of scale value according to EN837-1
Connection	DN50 PN16
IP class	IP67
Material of body	Carbon steel
Material of wetted parts	PTFE
Pressure resistance max	16 bar
Signal type	4-20 mA
Supply voltage ac max	260 V AC
Supply voltage ac min	90 V AC

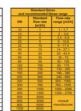
Temperature ambient from	-20 °C
Temperature ambient to	60 °C
Temperature of media from	-25 °C
Temperature of media to	130 °C
Weight	3.5 kg




The state of the s	Power supply	2	90260V AC	(*) 10. 38V DC (*) (m request)			
	Binary output 1	3 4	reverse polarity pr	otection, galvanic insulation, passive			
- C. P. P.	Pulse/frequency output	5.	reverse polarity protection, galvanic insulation, passive				
	Current output 4-20 mA	7 8	(+)	active (passive on request)			
	Communication	10	RS 485 A RS 485 B				
		- 11	RS 485 GND / shield				
	Binary input (passive)	13	reverse polarity protection, galvanic insulat				
	Binary output 2	14 15	reverse polarity p	rotection, galvanic insulation, passive			

DN	PN	A	В	D1	02	6		kg									
10		.150	153	90	60	54.	4	2.5									
. 15		OF.	155	. 95	65	14	4	2.6	_	_	_						
20		200	160	105	75	54	4	. 3						ons (m	m]		Weight
20 25 22			167	115	85	56	4	3.5	ON	PN	A		01	0.0	d		kg
32		1.0	180	140	100	58	- 6	5	10		150	153	90	63	14	4	2.5
40			1865	150	110	18	- 4	6.	15		or.	155	- 95	65	14	4	2,5
50 65 80		200	191	165	125	58	4	1	20		200	160	105	75	14	4	3
65		100	209	185	145	18	4	8	25		150	167	115	85	14	4	3.5
.80			224	200	160	18	8	9.5	32			180	140	100	18	4	5
		250	245	235	190	22	8	12	40			185	150	110	18	4	8
15 15 20 20 30		1000	276	270	220	26	8	15	.50		200	191	165	125	18	-4	7
150	25	300	305	300	250	- 26	8	20	65		1 3	209	185	145	18	4	
200		350	375	360	310	29	12	36				224	200	160	18	8	9.5
250		400	430	425	539	30	12	58	100	40	250	245	235	190	22		12
300		500	487	485	430	30	16	70	125	40	0.00	276	279	.229	28	8	15
350 400		355	542	555	490	33	16	85	150		300	305	300	250	26	8	20
400		600	615	620	550	36	16	100	200		350	375	375	320	30	12	36
450			657	\$70	600	36	20	120	250		400	430	450	385	33	12	58
500		1 8	750	730	660	36	20	100	300		500	487	515	450	33	16	70
600			870	845	770	.30	20	190	350			542	580	510	. 30	10	85
700		700	927	960	875	42	24	260	400		600	615	660	585	39	10	100
800		.800	1050	1085	990	46	24	250	450			188	.685	610	30	20	120
900		900	1145	1185	1090	48	28	450	500		1 3	750	755	670	42	20	160
1000		1000	1285	1320	1210	56	28	550	600			870	890	790.	42	- 20	190

DN	v=0,3m/s	vete/s	vv3m/s	vešmis	vetosis	v=10m/s	
10	0.085	0.283	0.848	1,414	2.262	2.827	
15	0.191	0.636	1,909	2.545	3.181	3.817	
20	0.339	1,131	3,393	5.655	9.048	11.310	
25	0.530	1.767	5.301	8.836	14,137	17,671	
32	0.869	2.895	8,686	14,476	23.162	28,953	
40	1.357	4.524	13.572	22.619	36,101	45,239	
50	2.121	7,069	21,206	35.343	56,549	70.686	
65	3.584	11.946	35.838	59,729	95,567	-119.46	
80	5.429	18.096	54,297	90,478	144.76	180.96	
100	8.482	26.274	84,823	141.37	226.19	282.74	
125	13,254	44,179	132,54	220,89	353,43	441,787	
150	19,085	63.617	190,85	318,087	508,94	636,17	
200	33,929	113,10	339,30	565,49	904.78	1130,0	
250	53,014	176,71	530,14	883,57	1413,7	1767,1	
300	76,341	254,47	763,41	1272.3	2035,7	2544,7	
350	103,90	346,36	1039,1	1731,8	2770,9	3463,6	
400	135,72	452,39	1357,2	2261.9	3619,1	4523.9	
500	212,06	706,86	2120,6	3534.3	5654.9	7068,6	
600	305,36	1017,9	3053,6	5089,4	8143,0	10178,7	
800	542.87	1809.6	5428.7	9047.8	14476.4	18095.5	
1000	848.23	2627.4	8482.3	14137.1	22619.4	28274.3	



	Terminal	Description					
Power supply	2	90260V AC	(*) 10.38V DC				
Binary output 1	3	reverse polarity protection, galvanic insulation					
Binary output 1	4		passive				
Pulse/frequency output	5	reverse polarity protection, galvanic insulation					
r-userireducing output	6	passive					
Current output 4+20 mA	7	(+)	active.				
COMPAN OUT OF THE	8	(1)	(passive on request)				
	9	RS 485 A					
Communication	10	RS 485 B	1				
Communication	11	RS 485 GND / shield					
Binary input (passive)	12	reverse polarity protection, galvanic insulation					
Dinancoutout 3	14	reverse polarity p	rotection, galvanic insulation				

DN	v+0,3m/s	weter/s	v#3m/s	v+5m/s	vetes/s	v+10m/s
10	0.085	0.283	0.848	1,414	2.262	2.827
15	0.191	0.636	1,909	2.545	3.181	3.817
20	0.339	1,131	3,393	5,655	9,048	11,310
25	0.530	1,767	5,301	8.636	14,137	17,671
32	0.869	2,895	8,686	14,476	23,162	28.953
40	1,35T	4,524	13,572	22,619	36,191	45,239
50	2,121	7,069	21,206	35.343	56,549	70,686
65	3,584	11,946	35,638	59,729	95,567	119,46
80	5,429	18.096	54,287	90,478	144,76	180.96
100	8,482	26,274	84,823	141,37	226,19	282.74
125	13.254	44,179	132,54	220.69	353.43	441,787
150	19,085	63.617	190.85	318.087	508,94	636.17
200	33,929	113,10	339,30	565,49	904,78	1130,0
250	53,014	176,71	530,14	883,57	1413.7	1767,1
300	76,341	254,47	763,41	1272.3	2035.7	2544.7
350	103,90	346,36	1039,1	1731,8	2770.9	3463,6
400	135,72	452,39	1357.2	2261,9	3619.1	4523.9
500	212.06	706,86	2120.6	3534,3	5654.9	7068,6
600	305,36	1017,9	3053.6	5089,4	B143,0	10178.7
800	542,87	1809,6	5428.7	9047,8	14476,4	18095.5
1000	848.23	2627.4	8482.3	14137.1	22619.4	282743

